多核CPU和单核的区别~

220be8f5fb3d06b40f863a30f9e8d1df.png

昨天有同学问我多核cpu和单核的区别大不大,今天简单写一篇回复下吧。大家有其他问题也可以文末给我留言,我会尽量抽时间写文回复。

首先回顾下基本概念,cpu,就是中央处理器,包括运算器和控制器。cpu的主要功能就是“一行一行的执行代码”。所以大家可以把cpu看成是医院的医生诊室,在一定时间内执行一行代码(给一个病人诊断治疗)。

所以单核cpu就是,代码经过前面一系列的前导操作(类似于医院挂号),然后到cpu处执行时发现,就只有一个cpu,大家排队执行。(类似于10个挂号窗口挂号,结果跑到医生那只有一个医生,只能排队等)。

这时候想要提升系统性能,只有两个办法,要么提升cpu性能(让医生看病快点),要么多加几个cpu(多整几个医生)。

多年前英特尔奔腾年代不断提升主频,就是提升cpu性能的思路。那个时候正是我读大学的时候,配电脑就是分析主频,秀操作就是超频。还有人搞什么液氮冷却超频……

后来主频实在玩不下去了,因为随着主频提升对工艺要求,EMI/EMC要求,发热量等要求太高,扛不住了,所以不得不转换思路,开始研究多核这条路了(一个医生已经007了,实在受不了了,不得不多配几个医生了)。

于是乎整起了多核心,多个cpu同步运行指令,这速度就起来了。多核还有两种不同思路,一种叫对称多核心,就是多个核心是完全相同的,譬如4核cortex-a53,这样的4个核心都是同一种内核a53,这种术语叫SMP。还有另一种就是多个核心不一样,譬如stm32mp157,内置2个cortex-a7,1个cortex-m4核心,所以它内部是有a7和m4两种不同类型的核心的,这种术语叫AMP。

一般经常说到的多核问题都是SMP的多核问题,amp这种析构多核大多数人还不太接触。我们今天主要是想说说smp。我从以下几个问题角度来讲一下。

1.多核的效率是单核的倍数吗?

譬如4核A53的cpu,性能是单核A53的4倍吗?理论上是,但是实际不可能,至少有两方面的损耗。

一个是多个核心的其他共用资源限制。譬如内存,你换了4核cpu难道内存也会加4倍吗?譬如cache,4核cpu的cache也是4倍设计吗?譬如寄存器,每个内核的寄存器都是独立的单核倍数设计吗?这就好像医院一样,1个医生换4个医生,但是做B超检查的还是一台机器,性能瓶颈就从医生转到B超检查了,不可能性能提升4倍的。

另一个是多核cpu之间的协调管理损耗。譬如你有4个任务要执行,怎么评论分配给多个cpu核心,避免那种“旱的旱死,涝的涝死”的情况,这就是所谓负载均衡的问题,在支持多核的os调度器设计时要考虑的。譬如多个核心同时运行两个相关的任务,需要考虑任务同步的,这也需要消耗额外性能。

这就好像公司工作一样,一个人的时候至少不用开会浪费时间,自己跟自己商量就行了。两个人就要开会同步工作,协调分配,所以工作效率绝对不可能达到2倍。要是几千几万人呢?那一天工作8小时有6小时在开会,干活时间只有30%不到了。

但是多核心宏观上总是提升了系统总体性能的,这就好像公司,团队人多了对外输出能力总是更强的(管理不失水准情况下)。所以SMP是目前提升系统性能的一种主流思路。

2.多核在编程上有区别吗?

如果你是做操作系统底层开发移植,那么多核和单核是有区别的,这个大家不妨去看看一些SMP SOC的Linux kernel源码就知道了,在我们经常分析的head.S中就有不少处理smp相关的代码。

但是如果你是做应用层开发,那对你来说区别很小了。

现在崇尚大家用多线程编程,也是因为SMP的硬件成为主流了,编程时把工作分开到多个线程中,这样调度器就可以将他们同时调度到多个cpu去运行,就可以提升系统性能,让你感觉到软件运行速度更快了。所以多线程编程要注意同步和临界区问题等,也都是并行运行带来的。

d7e776f0b6e0a7b0a76cd23005bfe8c3.png

1.STM32U5,意法半导体新打造的超低功耗MCU旗舰版

2.【例说Arm-2D界面设计】从不规则图标的显示说起

3.STM8CubeMX和STM32CubeMX功能一样吗?

4.这九种情况下的单片机项目尽量不要接~

5.偷偷把室友的STM32换成了GD32后。。。

6.剖开苹果A15芯片,看看die的布局!

77123f07264daa05f770d192f38e13e6.gif

免责声明:本文系网络转载,版权归原作者所有。如涉及作品版权问题,请与我们联系,我们将根据您提供的版权证明材料确认版权并支付稿酬或者删除内容。

### 单核CPU多核CPU区别 单核CPU多核CPU的主要区别在于处理能力以及并行计算的能力。单核处理器一次只能执行一个线程的任务,而多核处理器可以在同一时间调度多个线程到不同的核心上运行[^1]。 对于性能而言,在相同的频率下,多核CPU能够通过并发执行更多的指令来提高整体吞吐量。这意味着当应用程序被设计成可以利用多个内核时,它们将在多核环境中表现得更好。然而,如果程序不是专门为多核环境优化过的,则可能无法充分利用额外的核心资源,从而导致效率低下。 #### 性能差异的具体体现 - **单核CPU**:适合于那些不需要大量并发操作的应用场景;例如简单的文本编辑器、浏览器浏览网页等日常任务。 - **多核CPU**:适用于复杂的数据密集型应用,比如视频编码解码、科学仿真模拟、大规模数据库查询以及其他高度并行化的算法实现。这类工作负载通常可以从更多可用的物理核心中受益匪浅。 ```python import multiprocessing def task(): print('Executing our task') if __name__ == '__main__': processes = [] # 创建两个进程用于演示双核或多核上的并行执行 for _ in range(2): # 假设我们有一个两核以上的CPU p = multiprocessing.Process(target=task) processes.append(p) p.start() for process in processes: process.join() ``` 此Python脚本展示了如何在一个具有至少两个逻辑或物理核心的系统上启动两个独立的工作单元。这表明了多核架构允许同时进行多项任务的可能性,而在单核环境下这些任务将会顺序排队等待被执行。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值