- 博客(47)
- 收藏
- 关注
原创 vLLM引擎在部署大模型时显存占用较大的原因
vLLM的高显存占用源于其以吞吐量为优先的设计哲学(如预分配机制、连续批处理),以及默认参数对显存资源的保守预留。通过合理调整参数并利用PagedAttention的分块管理特性,可在性能与显存效率间取得平衡。vLLM引擎在部署模型时占用较大的显存是为了换取更高的计算效率和更低的推理延迟。以下是详细的解析:一、提升计算效率。
2025-05-12 09:35:40
880
原创 PaddleX 全流程解析:从底层原理到产业落地示例
三大特性,显著降低深度学习技术落地门槛。其支持从训练到部署的全链路优化,结合飞桨框架的硬件适配能力,可满足工业场景对性能与安全的双重要求。,通过模块化设计简化深度学习模型的开发流程。:实时检测交通监控中的车辆位置与类型。PaddleX 是基于。PaddleX 提供。PaddleX 支持。PaddleX 通过。
2025-02-25 08:49:36
646
原创 主流大模型DeepSeek完爆OpenAI详解
技术演进:从LLM基础架构到等创新,持续优化推理效率与多任务能力。性能优势:中文任务、数学推理、低成本训练为核心竞争力。开源战略:推动技术民主化,成为开源领域SOTA模型。DeepSeek-R1 及其变体支持开源合作和商业使用,包括模型蒸馏。这有助于降低人工智能模型开发的门槛,并促进创新。灵活性:DeepSeek提供了多种使用方式,包括Web访问、API集成和本地部署,满足不同场景的需求。硬件适应性:提供了从大规模模型到轻量级蒸馏模型的不同版本,适应不同的硬件配置。易用性。
2025-02-09 09:00:00
807
原创 知识图谱--知识融合|概念|技术
考虑如下句子:“昨天我买了新的iPhone,它是苹果最新推出的型号。” 在这个例子中,“苹果”指的是科技公司而不是水果。为了正确地理解这句话,我们需要执行实体消歧步骤,将“苹果”链接到正确的实体——即Apple Inc.。
2025-01-09 09:00:00
954
原创 2024年12月的“12 Days of OpenAI”活动总结
整个“12 Days of OpenAI”活动不仅展示了OpenAI在AI技术领域的重要进展,还为开发者和企业提供了更多工具,推动AI在实际应用中的广泛落地。通过这些创新,OpenAI致力于提升用户体验、增强模型能力,并推动人工智能技术的发展。
2025-01-08 21:05:50
455
原创 知识图谱--关系抽取|Joint方法详解
在联合解码的模型中,主体、客体和关系的抽取是同步进行的,通过一个统一的模型直接得到SPO三元组。这一部分同样采用了类似于头实体识别的方法,但在解码时不仅考虑了BERT编码后的隐层向量,还结合了识别出来的主体特征,确保了主体-关系-客体的一致性和准确性。CasRel 是一种基于参数共享的联合实体关系抽取方法,首次提出于2020年的ACL会议上,主要解决了关系三元组重叠的问题,如单一实体关系重叠(SEO)和实体对重叠(EPO)。此过程重复头实体识别的逻辑,但额外加入了主体特征的影响,以提高预测精度。
2025-01-08 09:00:00
1060
原创 知识图谱--关系抽取
关系抽取是从非结构化文本中识别出实体之间的特定关系,并将其表示为三元组(subject, relation, object),即〈S,P,O〉。关系抽取的核心在于将文本中的实体及其相互关系转化为结构化的形式。这通常涉及到两个主要步骤:首先识别文本中的实体(如人名、地名等),然后判断这些实体之间存在的具体关系类型(如“工作于”、“出生在”)。由于实体间的关系可以是单一或多重的,因此这一过程具有一定的复杂性。上述代码展示了如何利用jieba分词工具结合预定义的关系词汇表来识别文本中的实体和它们之间的关系。
2025-01-07 09:00:00
705
原创 知识图谱---实体抽取|命名实体识别|NER
命名实体识别(Named Entity Recognition, NER),也称作“实体识别”,是一种信息提取方法,其目的是识别文本中的命名实体,并将它们归类到预定义的类别中。例如,在句子“李华在2024年访问了北京。”中,“李华”是人名,“北京”是地名,“2024年”是时间表达式。实体是承载语义信息的基本单元,对于理解文本内容至关重要。常见的实体类别包括但不限于:人名、地名、机构名、时间、日期、货币、百分比等。BiLSTM+CRF是一种流行的序列标注模型,用于解决NER问题。
2025-01-06 09:00:00
887
原创 DeepSeek-V3:引领语言模型新纪元
2024年12月30日,深度求索公司震撼发布了其最新一代大型语言模型——DeepSeek-V3。作为一款基于混合专家(MoE)架构的模型,DeepSeek-V3不仅拥有6710亿参数规模,而且每个token激活的参数量为370亿,这一设计使得它在计算资源利用上更为高效,同时也保证了模型的强大表达能力。随着AI技术的发展和应用领域的不断扩展,DeepSeek-V3以其卓越性能和创新特性,迅速成为业界关注的焦点。
2025-01-04 09:00:00
855
原创 隐马尔科夫模型|前向算法|Viterbi 算法
尽管 Viterbi 算法和前向算法都使用了动态规划的思想来有效地解决原本复杂度极高的问题,但它们的应用场景和目标不同。前向算法侧重于评估观测序列的概率,而 Viterbi 算法则致力于找出最有可能的状态序列。理解这两种算法的区别及其具体实现,对于正确选择和应用 HMM 至关重要。
2024-12-24 15:59:21
1214
原创 实体抽取的两个任务:命名实体识别 (NER) 和实体链接 (Entity Linking) 的详细探讨
命名实体识别是自然语言处理(NLP)中的一个基础任务,其目的是从文本中自动识别出特定类型的命名实体,并对它们进行分类。这些实体可以包括人名、地名、组织名、日期、货币金额等。
2024-12-24 09:00:00
1384
原创 RAG(Retrieval-Augmented Generation): 检索增强生成的综合介绍
RAG(Retrieval-Augmented Generation)是一种结合了检索系统和生成式模型优点的混合架构,旨在提高文本生成任务的质量。它通过引入外部知识源,在生成过程中利用检索到的相关信息,使得生成的内容更加准确、上下文相关且富有信息量。
2024-12-23 09:00:00
403
原创 针对Meta发布的Llama 3.3-70B模型之体验|对比|亮点|架构
Meta发布的Llama 3.3-70B模型代表了当前AI技术发展的最新趋势,即不再单纯追求参数量的增长,而是更加注重效能与资源使用的最优化。这一模型不仅为研究人员和开发者提供了一个强大的工具,也为各行各业带来了新的应用契机。随着技术的不断完善和深入探索,我们有理由期待,像Llama 3.3这样的先进模型将继续推动社会变革,创造更多的价值和便利。同时,也提醒我们在享受技术带来的便捷时,要关注并解决随之而来的潜在风险和社会问题。
2024-12-22 09:00:00
1355
原创 针对阿里大模型Qwen2-72B-Instruct 体验|对比|亮点|使用|总结
阿里云发布的Qwen2系列模型,特别是最新的Qwen2-72B-Instruct版本,以其庞大的参数规模、卓越的性能和广泛的适用性,在开源社区中引起了广泛关注。本文将深入探讨Qwen2-72B-Instruct的特性、与前代模型的对比、亮点、获取方式及使用方法,并对其进行全面评价。总体而言,Qwen2-72B-Instruct作为阿里云新一代大模型的代表作之一,凭借其广泛的适用性和出色的性能,为科研工作者、开发者以及其他领域专业人士提供了强有力的工具支持,推动了AI技术的发展与创新。
2024-12-08 09:00:00
3428
原创 Llama-3.1-405B-Instruct 开源体验|对比|亮点|使用|总结
最新版本Llama-3.1-405B-Instruct以其惊人的参数规模、卓越的性能和广泛的适用性,在开源社区中引起了巨大反响。本文将深入探讨Llama-3.1-405B-Instruct的特点、与前代模型的对比、亮点、获取方式及使用方法,并对其进行全面评价。总体而言,Llama-3.1-405B-Instruct凭借其广泛的适用性和出色的性能,为科研工作者、开发者以及其他领域专业人士提供了强有力的工具支持,推动了AI技术的发展与创新。
2024-12-07 15:00:18
1342
原创 循环神经网络(RNN)及其变体:概念、结构与应用
RNN及其变体LSTM和GRU在处理序列数据方面表现出色,尤其是在NLP领域。然而,随着Transformer模型的出现,这些传统的序列模型面临着挑战。Transformer通过自注意力机制和并行化处理的优势,已经在许多NLP任务中取得了显著的性能提升。选择哪种模型取决于具体的应用需求、数据特性以及可用的计算资源。随着深度学习技术的发展,这些模型也在不断进化,以适应更复杂的数据处理需求。
2024-12-01 09:00:00
1432
原创 RNN模型文本预处理--文本特征处理
通过添加 n-gram 特征和对文本长度进行规范,我们可以有效地提升文本数据的质量,从而增强模型的性能。n-gram 特征能够捕捉到词语之间的局部依赖关系,而长度规范则确保了输入数据的一致性,便于模型处理。
2024-11-29 09:00:00
308
原创 RNN模型文本预处理--文本语料的数据分析
文本语料的数据分析文本语料的数据分析在自然语言处理(NLP)项目中起着至关重要的作用。通过数据分析,我们可以更好地理解数据集的特征,发现潜在的问题,并指导模型的设计和调优。
2024-11-28 09:00:00
676
原创 RNN模型文本预处理--数据增强方法
回译数据增强法是一种简单且有效的方法,通过多语言翻译来生成新的训练样本。虽然存在一定的重复率问题,但通过连续多语言翻译可以有效缓解这一问题。
2024-11-27 21:03:10
543
原创 RNN模型文本预处理--张量表示方法
本文将详细介绍文本张量表示的基本概念、常见方法(如one-hot编码、Word2vec),以及它们在实际应用中的优势和局限,并通过代码示例来展示这些方法的实现。则是指在神经网络中加入的Embedding层,它在整个网络训练过程中产生embedding矩阵(即embedding层的参数)。在神经网络中,Embedding层通常位于输入层和第一个隐藏层之间,用于将输入的词汇索引转换为对应的向量表示。是一种简单且直观的文本表示方法。它将每个词汇表示为一个具有n个元素的向量,其中n是语料库中不同词汇的总数。
2024-11-25 09:00:00
1395
原创 RNN模型文本预处理--基本处理方法
本文将介绍文本处理的几个基本方法:分词、词性标注和命名实体识别,并提供相应的Python代码示例。分词是将连续的字符序列根据一定的规则拆分成一个个词元(token)的过程。命名实体识别的目标是从文本中识别出具有特定意义的实体名称,如人名、地名、机构名、时间、日期、货币、百分比等。词性标注是对文本中的每个词进行词性标注的过程,常见的词性包括动词、名词、形容词等。:分词是将连续的字序列按照一定的规范重新组合成词序列的过程。:词作为语言语义理解的最小单元,是人类理解文本语言的基础。首先,确保已经安装了。
2024-11-23 18:11:44
842
原创 Docker 理论与实操指南
Docker 是一个开源的应用容器引擎,可以让开发者打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的 Linux 机器上,也可以实现虚拟化。Docker 的官方地址是。无论是应用开发者、运维人员、还是其他信息技术从业人员,都有必要认识和掌握 Docker,以节约有限的时间和资源。
2024-11-23 09:00:00
996
原创 Flask 详细介绍及高级用法
Flask 是一个用 Python 编写的轻量级 Web 框架,由 Armin Ronacher 开发,基于 Werkzeug 工具箱和 Jinja2 模板引擎。Flask 的设计理念是“微框架”,即提供核心功能,其他功能通过扩展来实现。这使得 Flask 非常适合快速开发小型到中型的 Web 应用程序。Flask 是一个非常灵活和强大的 Web 框架,适合快速开发和部署各种 Web 应用程序。通过上述步骤,你可以轻松地创建一个基本的 Flask 应用,并将其扩展为更复杂的功能,如模型部署。
2024-11-22 09:00:00
1659
原创 Transformer详解及衍生模型GPT|T5|LLaMa
Transformer 是一种革命性的神经网络架构,首次出现在2017年的论文《Attention Is All You Need》中,由Google的研究团队提出。与传统的RNN和LSTM模型不同,Transformer完全依赖于自注意力(Self-Attention)机制来捕获输入序列中的依赖关系,这使得它在处理长距离依赖方面表现尤为出色。自推出以来,Transformer已经成为自然语言处理(NLP)领域的主流架构,广泛应用于机器翻译、文本生成、情感分析等多种任务。
2024-11-21 09:00:00
1350
原创 卷积神经网络|构成|搭建|优化|案例
卷积神经网络(Convolutional Neural Network, CNN)是一种含有卷积层的神经网络,主要用于自动学习和提取图像特征。它广泛应用于图像分类、目标检测、语义分割等领域。卷积层:负责提取图像中的局部特征。池化层:用来大幅降低参数量级,进行降维。全连接层:用来输出想要的结果。卷积运算:输入 + Filter(卷积核) => 特征图卷积本质:卷积运算本质上是在卷积核和输入数据的局部区域间做点积。
2024-11-16 09:00:00
795
原创 神经网络|构成|搭建|优化
神经网络是一种模仿生物神经网络结构和功能的计算模型,由多个神经元串联构成。每个神经元执行的操作可以简化为加权和加上一个激活函数(引入非线性)。在编程接口中,常用的API包括Linear(线性层)和FC(全连接层)。
2024-11-15 09:00:00
963
原创 深度学习-张量的基本类型、数值计算、索引操作、形状操作
张量(Tensor)是深度学习和PyTorch中的核心概念之一,是标量、向量、矩阵在高维空间中的推广。在PyTorch中,张量用于表示和操作数据。以下是张量的基本类型、创建方法、类型转换、数值计算、索引操作、形状操作以及自动微分模块的详细介绍。注意:如果传递列表,则创建包含指定元素的张量。
2024-11-10 09:00:00
981
原创 深度学习基础及其发展与应用|AI|ML|DL|算法框架
深度学习的优点包括精确度高、性能好、效果好,能够拟合任意非线性的关系,且框架多,不需我们自己造轮子。然而,它也存在一些缺点,如黑箱、可解释性差,网络参数多、超参数多,需要大量的数据进行训练,训练时间长,对算力有较高要求,且小数据集容易过拟合。此外,深度学习还应用于视频分析(行为分析、实时视频处理等)、游戏和仿真(AI对战、环境模拟等)、推荐系统(个性化推荐)、金融领域(风险评估、欺诈检测等)等多个领域。用统计模型解决问题。百度开发的框架,计算图动态图都支持、有高级API、速度快、部署方便、有专门的平台。
2024-11-09 09:00:00
1281
原创 样本不均衡与异常点检测处理|SMOTE|LOF|IForest
在分类任务中,样本不均衡指的是不同类别的样本数量相差悬殊,比如y值中的正负样本不均衡。这种情况在实际应用中非常常见,比如在信贷审批中,违约的客户(负样本)往往远少于未违约的客户(正样本)。这种不均衡会导致模型在预测时偏向于多数类,从而降低对少数类的预测性能。异常值在实际数据中不可避免,异常点检测是数据处理的重要步骤。异常值通常指的是那些与大多数样本显著不同的样本点,它们可能是由于测量错误、数据录入错误或异常事件产生的。
2024-11-03 09:00:00
1176
原创 项目管理工具-git简介与使用|Git|Gitee|PyChram
在弹出的“Commit Changes”窗口中,你可以选择要提交的文件,并在底部的文本框中输入提交信息。在弹出的“Push Commits”窗口中,你可以选择要推送的分支,并确认远程仓库的URL是否正确。在PyCharm中,你可以通过点击右下角的Git工具栏中的“Commit”按钮来提交你的更改。这将检查所有已配置的远程仓库,并将最新的更改下载到你的本地仓库中,同时更新你的工作副本。在弹出的“Pull”窗口中,选择你要拉取的分支,并确认远程仓库的URL。
2024-10-31 09:00:00
866
原创 Anaconda 沙盒构建指南|小白适用|Py新环境
在数据科学和软件开发中,创建和管理多个项目时,为了避免不同项目之间的依赖冲突,使用虚拟环境(也称为沙盒)是一个非常好的实践。Anaconda 是一个流行的科学计算和数据科学平台,它提供了强大的工具来创建和管理这些虚拟环境。以下是使用 Anaconda 构建和管理沙盒(虚拟环境)的详细步骤。通过以上步骤,你可以轻松地在 Anaconda 中创建、管理和使用虚拟环境(沙盒),以确保不同项目之间的依赖相互独立,从而提高开发效率和项目稳定性。
2024-10-26 09:00:00
780
原创 机器学习之支持向量机SVM及API
支持向量机是一种强大的二分类模型,适用于小样本、高维度数据,并且可以通过选择不同的核函数来适应不同的数据类型。然而,SVM的计算复杂度较高,对参数选择敏感,需要在实际应用中仔细调整参数以获得最佳性能。在实际应用中,可以根据数据的特性和需求选择合适的核函数和参数设置,以提高SVM的分类效果和泛化能力。
2024-10-19 09:00:00
1246
原创 机器学习之聚类算法和API
聚类算法是一种根据样本之间的相似性将样本划分到不同类别中的方法。这种划分是基于某种相似性的计算方法,而不同的相似计算方法可能会导致不同的聚类结果。除了K-means算法外,还有许多其他聚类算法,如DBSCAN、层次聚类、谱聚类等。在实际应用中,可以根据数据的特性和聚类目标选择合适的聚类算法。聚类的目的是在没有先验知识的情况下,自动发现数据集中的内在结构和模式。聚类是无监督学习的一种,它不需要事先对数据进行标记或分类,而是通过算法自动发现数据的结构。
2024-10-18 09:00:00
1002
原创 机器学习之特征降维
特征降维指的是在某些限定条件下,通过降低特征个数来简化模型,提高计算效率,并可能提升模型的泛化性能。特征在训练模型时至关重要,但用于训练的数据集往往包含一些不重要的特征,这些特征可能导致模型泛化性能不佳。综上所述,特征降维是优化机器学习模型的重要手段之一,通过合理选择降维方法,可以显著提升模型的泛化能力和计算效率。主成分分析法通过数据压缩实现特征降维,去除特征之间的线性相关性,从而保留最具代表性的特征。为了优化模型性能,需要去除这些不重要的特征,保留对预测结果有显著影响的特征。
2024-10-17 09:00:00
1162
原创 朴素贝叶斯算法及API介绍
朴素贝叶斯分类器是一种简单但功能强大的概率分类方法,它基于贝叶斯定理以及特征之间的条件独立假设。在许多实际应用中,尽管这些假设在现实中并不总是成立,朴素贝叶斯分类器仍然表现良好,特别是在文本分类、垃圾邮件检测和情感分析等领域。
2024-10-16 09:00:00
385
原创 机器学习算法 之 集成学习
集成学习是一种强大的机器学习范式,通过将多个弱学习器组合成一个更强大的学习器,旨在解决单一预测模型可能存在的局限性,从而进一步提升预测性能。其核心思想在于利用不同模型的多样性,通过组合这些模型的预测结果,达到“集思广益”的效果。
2024-10-15 09:00:00
2568
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人