Hadoop常用脚本


说明

  1. 脚本放在/usr/bin目录下
  2. 执行方式参考执行实例
  3. 添加脚本执行权限:chmod +x 脚本名称

内容分发脚本

#1. 判断参数个数
if [ $# -lt 1 ]
then
    echo Not Enough Arguement!
    exit;
fi
#2. 遍历集群所有机器
for host in k8s-node1 k8s-node2 k8s-node3
do
	echo ==================== $host ====================
	#3. 遍历所有目录,挨个发送
	for file in $@
	do
		#4. 判断文件是否存在
		if [ -e $file ]
			then
				#5. 获取父目录
				pdir=$(cd -P $(dirname $file); pwd)
				#6. 获取当前文件的名称
				fname=$(basename $file)
				ssh $host "mkdir -p $pdir"
				rsync -av $pdir/$fname $host:$pdir
			else
				echo $file does not exists!
		fi
	done
done

执行

#xsync 路径全称
xsync /a/b

集群启动脚本

#!/bin/bash
if [ $# -lt 1 ]
	then
	echo "No Args Input..."
	exit ;
fi
case $1 in
"start")
	echo " =================== 启动 hadoop 集群 ==================="
	echo " --------------- 启动 hdfs ---------------"
	ssh k8s-node1 "/opt/module/hadoop-3.1.3/sbin/start-dfs.sh"
	echo " --------------- 启动 yarn ---------------"
	ssh k8s-node2 "/opt/module/hadoop-3.1.3/sbin/start-yarn.sh"
	echo " --------------- 启动 historyserver ---------------"
	ssh k8s-node2 "/opt/module/hadoop-3.1.3/bin/mapred --daemon start historyserver"
;;
"stop")
	echo " =================== 关闭 hadoop 集群 ==================="
	echo " --------------- 关闭 historyserver ---------------"
	ssh k8s-node2 "/opt/module/hadoop-3.1.3/bin/mapred --daemon stop historyserver"
	echo " --------------- 关闭 yarn ---------------"
	ssh k8s-node2 "/opt/module/hadoop-3.1.3/sbin/stop-yarn.sh"
	echo " --------------- 关闭 hdfs ---------------"
	ssh k8s-node1 "/opt/module/hadoop-3.1.3/sbin/stop-dfs.sh"
;;
*)
	echo "Input Args Error..."
;;
esac

执行

myhadoop stop
myhadoop start

所有节点jps

#!/bin/bash
for host in k8s-node1 k8s-node2 hadooks-node3
do
	echo =============== $host ===============
	ssh $host jps 
done

执行

jpsall
Hadoop常用组件包括Apache Hive、Apache Pig、Apache Spark、YARN和ZooKeeper。 Apache Hive是一个数据仓库工具,它提供了类似于SQL的查询语言,可以将结构化数据映射到Hadoop分布式文件系统中进行查询和分析。 Apache Pig是一个用于数据流处理的平台,它允许用户使用一种类似于脚本的语言来编写数据处理任务。 Apache Spark是一个快速的、通用的集群计算系统,它提供了内存计算和分布式数据处理的功能。 YARN是Hadoop的下一代资源管理器,它解决了原始Hadoop的扩展性和多计算框架支持的问题。 ZooKeeper是一个高可用的分布式服务框架,主要用于解决分布式集群中应用系统的一致性问题,它在Hadoop、HBase、Kafka等分布式系统中被广泛使用。 #### 引用[.reference_title] - *1* [hadoop的组件有哪些](https://blog.csdn.net/weixin_35757531/article/details/129075095)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [大数据技术Hadoop入门理论系列之一----hadoop生态圈介绍](https://blog.csdn.net/sunfly521/article/details/50463265)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [Hadoop大数据常用组件简介](https://blog.csdn.net/lglfa/article/details/90785651)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

LLZH919

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值