POJ 1088 滑雪

这道题可以拿搜索做,不过我觉得DP更省点时间,也好理解,多开了一点点内存空间。

记录所有的点的信息,按高度排序,然后再依照高度去找点,标记在一个二维数组里,并记录其中最大的权值。

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int a[105][105],dp[105][105];
struct point
{
    int i,j;
    int h;
};
point b[10002];
bool cmp(point x,point y)
{
    return x.h<y.h;
}
int main()
{
    int n,m,i,j,k,I,J,M;
    while(~scanf("%d%d",&n,&m))
    {
        k=0;
        for(i=0; i<=101; i++)
        {
            for(j=0;j<=101;j++)
            a[i][j]=10002;
        }
        for(i=1; i<=n; i++)
        {
            for(j=1; j<=m; j++)
            {
                scanf("%d",&a[i][j]);
                b[k].h=a[i][j];
                b[k].i=i;
                b[k].j=j;
                k++;
            }
        }
        sort(b,b+k, cmp);
        memset(dp,0,sizeof(dp));
        M=0;
        for(i=0; i<k; i++)
        {
            I=b[i].i,J=b[i].j;
            if(a[I+1][J]<a[I][J]&&dp[I][J]<dp[I+1][J]+1)
                dp[I][J]=dp[I+1][J]+1;
            if(a[I][J+1]<a[I][J]&&dp[I][J]<dp[I][J+1]+1)
                dp[I][J]=dp[I][J+1]+1;
            if(a[I-1][J]<a[I][J]&&dp[I][J]<dp[I-1][J]+1)
                dp[I][J]=dp[I-1][J]+1;
            if(a[I][J-1]<a[I][J]&&dp[I][J]<dp[I][J-1]+1)
                dp[I][J]=dp[I][J-1]+1;
            if(dp[I][J]>M)
                M=dp[I][J];
        }
        printf("%d\n",M+1);
    }
    return 0;
}


题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值