代码随想录刷题Day45 | 70. 爬楼梯 | 322. 零钱兑换 | 279. 完全平方数

代码随想录刷题Day45 | 70. 爬楼梯 | 322. 零钱兑换 | 279. 完全平方数

70. 爬楼梯

题目:

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 12 个台阶。你有多少种不同的方法可以爬到楼顶呢?

示例 1:

输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶

思路:

1阶,2阶,… m阶就是物品,楼顶就是背包。

每一阶可以重复使用,例如跳了1阶,还可以继续跳1阶。

问跳到楼顶有几种方法其实就是问装满背包有几种方法。

  1. 确定dp数组以及下标的含义

dp[i]:爬到有i个台阶的楼顶,有dp[i]种方法

  1. 确定递推公式

求装满背包有几种方法,递推公式一般都是dp[i] += dp[i - nums[j]];

本题呢,dp[i]有几种来源,dp[i - 1],dp[i - 2],dp[i - 3] 等等,即:dp[i - j]

那么递推公式为:dp[i] += dp[i - j]

  1. dp数组如何初始化

既然递归公式是 dp[i] += dp[i - j],那么dp[0] 一定为1,dp[0]是递归中一切数值的基础所在,如果dp[0]是0的话,其他数值都是0了。

下标非0的dp[i]初始化为0,因为dp[i]是靠dp[i-j]累计上来的,dp[i]本身为0这样才不会影响结果

  1. 确定遍历顺序

这是背包里求排列问题,即:1、2 步 和 2、1 步都是上三个台阶,但是这两种方法不一样!

所以需将target放在外循环,将nums放在内循环。

每一步可以走多次,这是完全背包,内循环需要从前向后遍历。

  1. 举例来推导dp数组

代码:

class Solution {
    public int climbStairs(int n) {
        int[] dp = new int[n + 2];
        dp[0] = 1;
        dp[1] = 1;
        for(int i = 2; i <= n; i++){
            for(int j = 1; j<= 2; j++){
                dp[i] += dp[i - j];
            }
        }
        return dp[n];
    }
}

322. 零钱兑换

题目:

给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。

计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1

你可以认为每种硬币的数量是无限的。

示例 1:

输入:coins = [1, 2, 5], amount = 11
输出:3 
解释:11 = 5 + 5 + 1

思路:

题目中说每种硬币的数量是无限的,可以看出是典型的完全背包问题。

动规五部曲分析如下:

  1. 确定dp数组以及下标的含义

dp[j]:凑足总额为j所需钱币的最少个数为dp[j]

  1. 确定递推公式

得到dp[j](考虑coins[i]),只有一个来源,dp[j - coins[i]](没有考虑coins[i])。

凑足总额为j - coins[i]的最少个数为dp[j - coins[i]],那么只需要加上一个钱币coins[i]即dp[j - coins[i]] + 1就是dp[j](考虑coins[i])

所以dp[j] 要取所有 dp[j - coins[i]] + 1 中最小的。

递推公式:dp[j] = min(dp[j - coins[i]] + 1, dp[j]);

  1. dp数组如何初始化

首先凑足总金额为0所需钱币的个数一定是0,那么dp[0] = 0;

其他下标对应的数值呢?

考虑到递推公式的特性,dp[j]必须初始化为一个最大的数,否则就会在min(dp[j - coins[i]] + 1, dp[j])比较的过程中被初始值覆盖。

所以下标非0的元素都是应该是最大值。

代码如下:

vector<int> dp(amount + 1, INT_MAX);
dp[0] = 0;
  1. 确定遍历顺序

本题求钱币最小个数,那么钱币有顺序和没有顺序都可以,都不影响钱币的最小个数

所以本题并不强调集合是组合还是排列。

如果求组合数就是外层for循环遍历物品,内层for遍历背包

如果求排列数就是外层for遍历背包,内层for循环遍历物品

所以本题的两个for循环的关系是:外层for循环遍历物品,内层for遍历背包或者外层for遍历背包,内层for循环遍历物品都是可以的!

那么我采用coins放在外循环,target在内循环的方式。

本题钱币数量可以无限使用,那么是完全背包。所以遍历的内循环是正序

综上所述,遍历顺序为:coins(物品)放在外循环,target(背包)在内循环。且内循环正序。

  1. 举例推导dp数组

以输入:coins = [1, 2, 5], amount = 5为例

322.零钱兑换

dp[amount]为最终结果。

代码:

class Solution {
    public int coinChange(int[] coins, int amount) {
        int[] dp = new int[amount + 1];
        for(int i = 1; i <= amount; i++){
            dp[i] = Integer.MAX_VALUE;
        }
        for(int i = 0; i < coins.length; i++){
            for(int j = coins[i]; j <= amount; j++){
                if(dp[j - coins[i]] != Integer.MAX_VALUE){
                    dp[j] = Math.min(dp[j], dp[j - coins[i]] + 1);
                }
            }
        }
        return dp[amount] == Integer.MAX_VALUE ? -1 : dp[amount];
    }
}

279. 完全平方数

题目:

给你一个整数 n ,返回 和为 n 的完全平方数的最少数量

完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,14916 都是完全平方数,而 311 不是。

示例 1:

输入:n = 12
输出:3 
解释:12 = 4 + 4 + 4

思路:

可能刚看这种题感觉没啥思路,又平方和的,又最小数的。

我来把题目翻译一下:完全平方数就是物品(可以无限件使用),凑个正整数n就是背包,问凑满这个背包最少有多少物品?

动规五部曲分析如下:

  1. 确定dp数组(dp table)以及下标的含义

dp[j]:和为j的完全平方数的最少数量为dp[j]

  1. 确定递推公式

dp[j] 可以由dp[j - i * i]推出, dp[j - i * i] + 1 便可以凑成dp[j]。

此时我们要选择最小的dp[j],所以递推公式:dp[j] = min(dp[j - i * i] + 1, dp[j]);

  1. dp数组如何初始化

dp[0]表示 和为0的完全平方数的最小数量,那么dp[0]一定是0。

有同学问题,那0 * 0 也算是一种啊,为啥dp[0] 就是 0呢?

看题目描述,找到若干个完全平方数(比如 1, 4, 9, 16, …),题目描述中可没说要从0开始,dp[0]=0完全是为了递推公式。

非0下标的dp[j]应该是多少呢?

从递归公式dp[j] = min(dp[j - i * i] + 1, dp[j]);中可以看出每次dp[j]都要选最小的,所以非0下标的dp[j]一定要初始为最大值,这样dp[j]在递推的时候才不会被初始值覆盖

  1. 确定遍历顺序

我们知道这是完全背包,

如果求组合数就是外层for循环遍历物品,内层for遍历背包。

如果求排列数就是外层for遍历背包,内层for循环遍历物品。

所以本题外层for遍历背包,内层for遍历物品,还是外层for遍历物品,内层for遍历背包,都是可以的!

我这里先给出外层遍历背包,内层遍历物品的代码:

vector<int> dp(n + 1, INT_MAX);
dp[0] = 0;
for (int i = 0; i <= n; i++) { // 遍历背包
    for (int j = 1; j * j <= i; j++) { // 遍历物品
        dp[i] = min(dp[i - j * j] + 1, dp[i]);
    }
}
  1. 举例推导dp数组

已输入n为5例,dp状态图如下:

279.完全平方数

dp[0] = 0 dp[1] = min(dp[0] + 1) = 1 dp[2] = min(dp[1] + 1) = 2 dp[3] = min(dp[2] + 1) = 3 dp[4] = min(dp[3] + 1, dp[0] + 1) = 1 dp[5] = min(dp[4] + 1, dp[1] + 1) = 2

最后的dp[n]为最终结果。

代码:

class Solution {
    public int numSquares(int n) {
        int[] num = new int[n / 2 + 1];
        for(int i = 1; i <= n; i++){
            if(i * i < n){
                num[i - 1] = i * i;
            }else if(i * i == n){
                return 1;
            }else{
                break;
            }
        }
        int[] dp = new int[n + 1];
        for(int i = 1; i <= n; i++){
            dp[i] = Integer.MAX_VALUE;
        }
        for(int i = 0; i < num.length && num[i] != 0; i++){
            for(int j = num[i]; j <= n; j++){
                if(dp[j - num[i]] != Integer.MAX_VALUE){
                    dp[j] = Math.min(dp[j], dp[j - num[i]] + 1);
                }
            }
        }
        return dp[n];
    }
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值