题目描述:
Description
新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战。THU集团旗下的CS&T通讯公司在新一代通讯技术血战的前夜,需要做太多的准备工作,仅就站址选择一项,就需要完成前期市场研究、站址勘测、最优化等项目。在前期市场调查和站址勘测之后,公司得到了一共N个可以作为通讯信号中转站的地址,而由于这些地址的地理位置差异,在不同的地方建造通讯中转站需要投入的成本也是不一样的,所幸在前期调查之后这些都是已知数据:建立第i个通讯中转站需要的成本为Pi(1≤i≤N)。另外公司调查得出了所有期望中的用户群,一共M个。关于第i个用户群的信息概括为Ai, Bi和Ci:这些用户会使用中转站Ai和中转站Bi进行通讯,公司可以获益Ci。(1≤i≤M, 1≤Ai, Bi≤N) THU集团的CS&T公司可以有选择的建立一些中转站(投入成本),为一些用户提供服务并获得收益(获益之和)。那么如何选择最终建立的中转站才能让公司的净获利最大呢?(净获利 = 获益之和 - 投入成本之和)
Input
输入文件中第一行有两个正整数N和M 。第二行中有N个整数描述每一个通讯中转站的建立成本,依次为P1, P2, …, PN 。以下M行,第(i + 2)行的三个数Ai, Bi和Ci描述第i个用户群的信息。所有变量的含义可以参见题目描述。
Output
你的程序只要向输出文件输出一个整数,表示公司可以得到的最大净获利。
Sample Input
5 5
1 2 3 4 5
1 2 3
2 3 4
1 3 3
1 4 2
4 5 3
Sample Output
4
HINT
【样例说明】选择建立1、2、3号中转站,则需要投入成本6,获利为10,因此得到最大收益4。【评分方法】本题没有部分分,你的程序的输出只有和我们的答案完全一致才能获得满分,否则不得分。【数据规模和约定】 80%的数据中:N≤200,M≤1 000。 100%的数据中:N≤5 000,M≤50 000,0≤Ci≤100,0≤Pi≤100。
题解:
一次提交就水过了这题,对于网络流初学者来说很happy~
这题的答案就是收益之和-成本之和。
收益之和统计起来非常方便,只要把所有用户的交费求和就好了。但是我们要考虑到有一些用户可以不提供服务,有一些中转站也可以选择不开,我们只要用网络流求出最小代价,减去即可。
考虑建立超级源和超级汇S和T,将S与客户连边,流量是给这个用户提供服务可以获得的收益;将T与中转站连边,流量是建立这个中转站的代价;将每个用户和中转站连边,边长inf(保证这些边一定不会成为割)。那么答案就是:用户的交费之和-最小割。
原因:对于一条路径,不是割左边(建这条路径)就是割右边(不建这条路径),所以是符合题意的。
(ps:数组大小懒得算,是随便开的= =
代码如下:
#include<cstdio>
#include<string>
#include<cstring>
using namespace std;
const int maxn=100005,maxm=1000005,inf=1<<30;
int n,m,ans,tot,S,T,lnk[maxn],son[maxm],nxt[maxm],w[maxm],cur[maxn],dep[maxn],que[maxn];
inline int read(){
int x=0; char ch=getchar();
while (ch<'0'||ch>'9') ch=getchar();
while (ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x;
}
void add(int x,int y,int z){
son[++tot]=y,w[tot]=z,nxt[tot]=lnk[x],lnk[x]=tot;
son[++tot]=x,w[tot]=0,nxt[tot]=lnk[y],lnk[y]=tot;
}
int bfs(){
memset(dep,0,sizeof(dep));
int head=0,tail=1; que[tail]=S,dep[S]=1;
while (head!=tail) {
head++;
for (int j=lnk[que[head]];j!=-1;j=nxt[j])
if (dep[son[j]]==0&&w[j]>0) dep[son[j]]=dep[que[head]]+1,que[++tail]=son[j];
}
return dep[T];
}
int dfs(int x,int sum){
if (x==T) return sum;
for (int& j=cur[x];j!=-1;j=nxt[j])
if (w[j]>0&&dep[son[j]]==dep[x]+1) {
int sum1=dfs(son[j],min(sum,w[j]));
if (sum1>0) {w[j]-=sum1,w[j^1]+=sum1; return sum1;}
}
return 0;
}
int dinic(){
while (bfs()) {
for (int i=1;i<=T;i++) cur[i]=lnk[i];
int sum; while (sum=dfs(S,inf)) ans-=sum;
}
return ans;
}
int main(){
n=read(),m=read(),S=n+m+1,T=S+1; tot=-1;
memset(lnk,255,sizeof(lnk)); memset(nxt,255,sizeof(nxt));
for (int i=1;i<=n;i++) {
int x=read(); add(m+i,T,x);
}
for (int i=1;i<=m;i++){
int x=read(),y=read(),z=read(); ans+=z;
add(S,i,z); add(i,x+m,inf); add(i,y+m,inf);
}
printf("%d\n",dinic());
return 0;
}