题目链接
题意
给出一个序列,问区间[l, r]中所有不同元素出现的第一个位置(取最左)组成的序列中的第k/2个,k是区间不同数的个数。
第i个询问区间依赖于第i-1个询问的答案,所以是强制在线的。
思路
区间第k个,显然是主席树,和查询区间不同数的个数一样,都是相同的数只取一个,但这个是取相同数的最前面一个,所以在建树的时候倒过来建就可以满足要求,然后要查询位置第k/2的数的位置,所以先求出这个区间[l,r]内不同数的个数,然后直接询问区间第k/2就可以。
#include <bits/stdc++.h>
using namespace std;
const int maxn = 2e5 +7;
typedef long long ll;
int n, m, root[maxn], cnt;
struct node {
int l, r, sum;
}T[maxn * 40];
void update(int l, int r, int &x, int y, int pos, int C) {
T[++cnt] = T[y];
T[cnt].sum += C;
x = cnt;
if(l == r) return;
int mid = (l + r) >> 1;
if(pos <= mid) update(l, mid, T[x].l, T[y].l, pos, C);
else update(mid + 1, r, T[x].r, T[y].r, pos, C);
}
int a[maxn], vis[maxn];
int querynum(int l, int r, int id, int L, int R) {
if(L <= l && R >= r) return T[id].sum;
int mid = (l + r) >> 1, ans = 0;
if(L <= mid) ans += querynum(l, mid, T[id].l, L, R);
if(R > mid) ans += querynum(mid + 1, r, T[id].r, L, R);
return ans;
}
int query(int l, int r, int id, int k) {//查询操作*
if(l == r) return r;
int mid = (l + r) >> 1;
if(T[T[id].l].sum >= k) return query(l, mid, T[id].l, k);
else return query(mid + 1, r, T[id].r, k - T[T[id].l].sum);
}
int ret[maxn];
int main()
{
int t, Case = 1;
scanf("%d", &t);
while (t--) {
scanf("%d %d", &n, &m);
for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
for (int i = n; i >= 1; i--) {
if(!vis[a[i]]) update(1, n, root[i], root[i + 1], i, 1);
else {
update(1, n, root[i], root[i + 1], vis[a[i]], -1);
update(1, n, root[i], root[i], i, 1);
}
vis[a[i]] = i;
}
int ans = 0, l, r;
for (int i = 1; i <= m; i++) {
scanf("%d %d", &l, &r);
l = (l + ans) % n + 1;
r = (r + ans) % n + 1;
if(l > r) swap(l, r);
int num = querynum(1, n, root[l], l, r);//查询区间不同数的个数
int k = num / 2 + num % 2;//倒过来存树的话,l是最新的状态,所以从L开始查询
ret[i] = query(1, n, root[l], k);//查询第k/2个数的位置
ans = ret[i];
}
printf("Case #%d:", Case++);
for (int i = 1; i <= m; i++)
printf(" %d", ret[i]);
printf("\n");
memset(root, 0, sizeof(root));//多个样例,需要初始化
memset(vis, 0, sizeof(vis));
for (int i = 1; i <= cnt; i++) {
T[i].l = T[i].r = T[i].sum = 0;
}
cnt = 0;
}
return 0;
}