#6014. 「网络流 24 题」最长 k 可重区间集

题目链接
题意
给n个区间的集合S,求一个区间集合A属于S,且集合A的每个区间的长度和最大,每个点最多可以选k次。
思路
首先每个点可以重复k次,可以用流量来限制,用最大费用最大流来做。
将所有区间离散化,源点在最左边,汇点在最右边,每一个点都向右边相邻的点连一条容量为INF,费用为0的边,对于每个区间,左端点到右端点连一条容量为1费用为r-l的边,容量为1是因为一个区间只能取一次。然后跑最大费用最大流。

#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
using namespace std;
const int N = 5e3 + 7;
const int M = 1e4 + 7;
const int maxn = 5e3 + 7;
typedef long long ll;
int maxflow, mincost;
struct Edge {
    int from, to, cap, flow, cost;
    Edge(int u, int v, int ca, int f, int co):from(u), to(v), cap(ca), flow(f), cost(co){};
};
struct MCMF
{
    int n, m, s, t;
    vector<Edge> edges;
    vector<int> G[N];
    int inq[N], d[N], p[N], a[N];//是否在队列 距离 上一条弧 可改进量
    void init(int n) {
        this->n = n;
        for (int i = 0; i < n; i++) G[i].clear();
        edges.clear();
    }
    void add(int from, int to, int cap, int cost) {
        edges.push_back(Edge(from, to, cap, 0, cost));
        edges.push_back(Edge(to, from, 0, 0, -cost));
        int m = edges.size();
        G[from].push_back(m - 2);
        G[to].push_back(m - 1);
    }
    bool SPFA(int s, int t, int &flow, int &cost) {
        for (int i = 0; i < N; i++) d[i] = INF;
        memset(inq, 0, sizeof(inq));
        d[s] = 0; inq[s] = 1; p[s] = 0; a[s] = INF;
        queue<int> que;
        que.push(s);
        while (!que.empty()) {
            int u = que.front();
            que.pop();
            inq[u]--;
            for (int i = 0; i < G[u].size(); i++) {
                Edge& e = edges[G[u][i]];
                if(e.cap > e.flow && d[e.to] > d[u] + e.cost) {
                    d[e.to] = d[u] + e.cost;
                    p[e.to] = G[u][i];
                    a[e.to] = min(a[u], e.cap - e.flow);
                    if(!inq[e.to]) {
                        inq[e.to]++;
                        que.push(e.to);
                    }
                }
            }
        }
        if(d[t] == INF) return false;
        flow += a[t];
        cost += d[t] * a[t];
        int u = t;
        while (u != s) {
            edges[p[u]].flow += a[t];
            edges[p[u]^1].flow -= a[t];
            u = edges[p[u]].from;
        }
        return true;
    }
    int MinMaxflow(int s, int t) {
        int flow = 0, cost = 0;
        while (SPFA(s, t, flow, cost));
        maxflow = flow; mincost = cost;
        return cost;
    }
};
int a[maxn], l[maxn], r[maxn], tot;
int main()
{
    int n, m, s, t, k;
    scanf("%d%d", &n, &k);
    MCMF solve;
    for (int i = 1; i <= n; i++) {
        scanf("%d%d", &l[i], &r[i]);
        if(l[i] > r[i]) swap(l[i], r[i]);
        a[++tot] = l[i], a[++tot] = r[i];
    }
    sort(a + 1, a + 1 + tot);
    int siz = unique(a + 1, a + 1 + tot) - a - 1;
    for (int i = 1; i <= n; i++) {
        l[i] = lower_bound(a + 1, a + 1 + siz, l[i]) - a;
        r[i] = lower_bound(a + 1, a + 1 + siz, r[i]) - a;
    }
    s = 0; t = siz + 1;
    solve.add(s, 1, k, 0);
    solve.add(siz, t, k, 0);
    for (int i = 1; i < siz; i++) solve.add(i, i + 1, INF, 0);
    for (int i = 1; i <= n; i++) solve.add(l[i], r[i], 1, a[l[i]] - a[r[i]]);
    solve.MinMaxflow(s, t);
    printf("%d\n", -mincost);
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值