dfs 练习题

一直不是很清楚dfs
于是重新看看以前的题

单词接龙

题目描述 Description
单词接龙是一个与我们经常玩的成语接龙相类似的游戏,现在我们已知一组单词,且给定一个开头的字母,要求出以这个字母开头的最长的“龙”(每个单词都最多在“龙”中出现两次),在两个单词相连时,其重合部分合为一部分,例如beast和astonish,如果接成一条龙则变为beastonish,另外相邻的两部分不能存在包含关系,例如at和atide间不能相连。

输入描述 Input Description
输入的第一行为一个单独的整数n(n<=20)表示单词数,以下n行每行有一个单词,输入的最后一行为一个单个字符,表示“龙”开头的字母。你可以假定以此字母开头的“龙”一定存在.

输出描述 Output Description
只需输出以此字母开头的最长的“龙”的长度

样例输入 Sample Input
5

at

touch

cheat

choose

tact

a

样例输出 Sample Output
23

由题意和数据易知应该是搜索
单词不大 我们用string来处理
然后dfs找答案 详见下面
写个 check()判断连通[i][j]

#include <iostream>
#include <cstdio>
#include <cstring>

#define Maxn 21

using namespace std;

string str[Maxn];   //
int n,f[Maxn][Maxn];
int sum[Maxn]={0};
char ch;    
int ans=0;  //结果 


int Min(int x,int y)
{
    if(x<y) return x;
    return y;   
}

int check(int x,int y)  //处理连通性x在前y在后 
{
    for(int d=1;d<Min(str[x].size(),str[y].size());d++) 
    {
        if(str[x].substr(str[x].size()-d,d)==str[y].substr(0,d)) return d;
    }
    return 0;
}

void init()
{
    cin>>n;
    for(int i=1;i<=n;i++)
    {
        cin>>str[i];
    }
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=n;j++)   
        {
            f[i][j]=check(i,j);
        }
    }
    cin>>ch;
}

void dfs(int x,int len)
{
    if(len>ans) ans=len;//更新答案
    for(int i=1;i<=n;i++)
    {
        if(f[x][i]&&sum[i]<2)   //若当前串可以连接并且用的次数小于2则拓展
        {
            sum[i]++;
            dfs(i,len+str[i].size()-f[x][i]);
            sum[i]--;
        }
    }
}

int main()
{
    init();
    for(int i=1;i<=n;i++)
    {
        if(str[i][0]==ch)//开头
        {
            sum[i]++;
            dfs(i,str[i].size());   
            sum[i]--;
        }
    }
    cout<<ans<<endl; 
    return 0;
}

四色问题

题目描述 Description
给定N(小于等于8)个点的地图,以及地图上各点的相邻关系,请输出用4种颜色将地图涂色的所有方案数(要求相邻两点不能涂成相同的颜色)

数据中0代表不相邻,1代表相邻

输入描述 Input Description
第一行一个整数n,代表地图上有n个点

接下来n行,每行n个整数,每个整数是0或者1。第i行第j列的值代表了第i个点和第j个点之间是相邻的还是不相邻,相邻就是1,不相邻就是0.

我们保证a[i][j] = a[j][i] (a[i,j] = a[j,i])

输出描述 Output Description
染色的方案数

样例输入 Sample Input
8
0 0 0 1 0 0 1 0
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0

样例输出 Sample Output
15552

数据范围及提示 Data Size & Hint
n<=8

四色问题是经典的dfs问题
当然注意要回溯

#include<cstdio>
using namespace std;

int n,a[10][10],f=0,b[10];
bool k;
void dfs(int x)
{
    int i,j;
    if(x>n)f++;
    else for(i=1;i<=4;i++)
    { 
      k=true;//尝试染色i 
      for(j=1;j<=n;j++)
      if(a[x][j]&&b[j]==i)//检查不合法的去掉 
      {   k=false;// 
          break;  }  

       if(k){
             b[x]=i;//回溯法 
            dfs(x+1);
             b[x]=0;
              }
             }  
            }
int main(){
    int i,j;
    scanf("%d",&n);
    for(i=1;i<=n;i++){
       for(j=1;j<=n;j++){
          scanf("%d",&a[i][j]);
          }
          }
    dfs(1);
    printf("%d",f);
    return 0;
}

全排列

全排列当然可以dfs了
然而c++里面有函数
只不过dfs的思维还是很重要的
对于一些题可以暴力拿分

N皇后问题

题目描述 Description
在n×n格的棋盘上放置彼此不受攻击的n个皇后。按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。n后问题等价于再n×n的棋盘上放置n个皇后,任何2个皇后不妨在同一行或同一列或同一斜线上。

输入描述 Input Description
给定棋盘的大小n (n ≤ 13)

输出描述 Output Description
输出整数表示有多少种放置方法。

样例输入 Sample Input
8

样例输出 Sample Output
92

数据范围及提示 Data Size & Hint
n<=13

(时限提高了,不用打表了)

dfs中注意判断条件
然后就差不多了

#include<cstdio>
using namespace std;
int a[370][370];
bool vis[300][300];
int n;
int tot=0;
void df(int cur)//cur 当前层数  [0,n-1]
{if(cur==n)
 {
tot++;
return ;
}
for(int i=1;i<=n;i++) {
if(!vis[0][i]&&!vis[1][cur+i]&&!vis[2][cur-i+n]) 
{
vis[0][i]=vis[1][i+cur]=vis[2][cur-i+n]=true;            //vis[1][i+cur],,vis[2][cur-i+n],,左右对角线;
df(cur+1);
vis[0][i]=vis[1][i+cur]=vis[2][cur-i+n]=false;
}
}
}

int main()
{
 while(scanf("%d",&n)!=EOF)//棋盘数 
 {df(0);//0层开始 
 printf("%d\n",tot);
 }
return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值