一直不是很清楚dfs
于是重新看看以前的题
单词接龙
题目描述 Description
单词接龙是一个与我们经常玩的成语接龙相类似的游戏,现在我们已知一组单词,且给定一个开头的字母,要求出以这个字母开头的最长的“龙”(每个单词都最多在“龙”中出现两次),在两个单词相连时,其重合部分合为一部分,例如beast和astonish,如果接成一条龙则变为beastonish,另外相邻的两部分不能存在包含关系,例如at和atide间不能相连。
输入描述 Input Description
输入的第一行为一个单独的整数n(n<=20)表示单词数,以下n行每行有一个单词,输入的最后一行为一个单个字符,表示“龙”开头的字母。你可以假定以此字母开头的“龙”一定存在.
输出描述 Output Description
只需输出以此字母开头的最长的“龙”的长度
样例输入 Sample Input
5
at
touch
cheat
choose
tact
a
样例输出 Sample Output
23
由题意和数据易知应该是搜索
单词不大 我们用string来处理
然后dfs找答案 详见下面
写个 check()判断连通[i][j]
#include <iostream>
#include <cstdio>
#include <cstring>
#define Maxn 21
using namespace std;
string str[Maxn]; //
int n,f[Maxn][Maxn];
int sum[Maxn]={0};
char ch;
int ans=0; //结果
int Min(int x,int y)
{
if(x<y) return x;
return y;
}
int check(int x,int y) //处理连通性x在前y在后
{
for(int d=1;d<Min(str[x].size(),str[y].size());d++)
{
if(str[x].substr(str[x].size()-d,d)==str[y].substr(0,d)) return d;
}
return 0;
}
void init()
{
cin>>n;
for(int i=1;i<=n;i++)
{
cin>>str[i];
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
f[i][j]=check(i,j);
}
}
cin>>ch;
}
void dfs(int x,int len)
{
if(len>ans) ans=len;//更新答案
for(int i=1;i<=n;i++)
{
if(f[x][i]&&sum[i]<2) //若当前串可以连接并且用的次数小于2则拓展
{
sum[i]++;
dfs(i,len+str[i].size()-f[x][i]);
sum[i]--;
}
}
}
int main()
{
init();
for(int i=1;i<=n;i++)
{
if(str[i][0]==ch)//开头
{
sum[i]++;
dfs(i,str[i].size());
sum[i]--;
}
}
cout<<ans<<endl;
return 0;
}
四色问题
题目描述 Description
给定N(小于等于8)个点的地图,以及地图上各点的相邻关系,请输出用4种颜色将地图涂色的所有方案数(要求相邻两点不能涂成相同的颜色)
数据中0代表不相邻,1代表相邻
输入描述 Input Description
第一行一个整数n,代表地图上有n个点
接下来n行,每行n个整数,每个整数是0或者1。第i行第j列的值代表了第i个点和第j个点之间是相邻的还是不相邻,相邻就是1,不相邻就是0.
我们保证a[i][j] = a[j][i] (a[i,j] = a[j,i])
输出描述 Output Description
染色的方案数
样例输入 Sample Input
8
0 0 0 1 0 0 1 0
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
样例输出 Sample Output
15552
数据范围及提示 Data Size & Hint
n<=8
四色问题是经典的dfs问题
当然注意要回溯
#include<cstdio>
using namespace std;
int n,a[10][10],f=0,b[10];
bool k;
void dfs(int x)
{
int i,j;
if(x>n)f++;
else for(i=1;i<=4;i++)
{
k=true;//尝试染色i
for(j=1;j<=n;j++)
if(a[x][j]&&b[j]==i)//检查不合法的去掉
{ k=false;//
break; }
if(k){
b[x]=i;//回溯法
dfs(x+1);
b[x]=0;
}
}
}
int main(){
int i,j;
scanf("%d",&n);
for(i=1;i<=n;i++){
for(j=1;j<=n;j++){
scanf("%d",&a[i][j]);
}
}
dfs(1);
printf("%d",f);
return 0;
}
全排列
全排列当然可以dfs了
然而c++里面有函数
只不过dfs的思维还是很重要的
对于一些题可以暴力拿分
N皇后问题
题目描述 Description
在n×n格的棋盘上放置彼此不受攻击的n个皇后。按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。n后问题等价于再n×n的棋盘上放置n个皇后,任何2个皇后不妨在同一行或同一列或同一斜线上。
输入描述 Input Description
给定棋盘的大小n (n ≤ 13)
输出描述 Output Description
输出整数表示有多少种放置方法。
样例输入 Sample Input
8
样例输出 Sample Output
92
数据范围及提示 Data Size & Hint
n<=13
(时限提高了,不用打表了)
dfs中注意判断条件
然后就差不多了
#include<cstdio>
using namespace std;
int a[370][370];
bool vis[300][300];
int n;
int tot=0;
void df(int cur)//cur 当前层数 [0,n-1]
{if(cur==n)
{
tot++;
return ;
}
for(int i=1;i<=n;i++) {
if(!vis[0][i]&&!vis[1][cur+i]&&!vis[2][cur-i+n])
{
vis[0][i]=vis[1][i+cur]=vis[2][cur-i+n]=true; //vis[1][i+cur],,vis[2][cur-i+n],,左右对角线;
df(cur+1);
vis[0][i]=vis[1][i+cur]=vis[2][cur-i+n]=false;
}
}
}
int main()
{
while(scanf("%d",&n)!=EOF)//棋盘数
{df(0);//0层开始
printf("%d\n",tot);
}
return 0;
}