1.3 线性代数
1.3.1 标量
from mxnet import np, npx
npx.set_np()
x = np.array(3.0)
y = np.array(2.0)
x + y, x * y, x / y, x**y
(array(5.), array(6.), array(1.5), array(9.))
1.3.2 向量
x = np.arange(4)
x
array([0., 1., 2., 3.])
len(x)
4
x.shape
(4,)
x = np.array([[0],[1],[2],[3]])
x.shape
(4, 1)
1.3.3 矩阵
A = np.arange(20).reshape(5,4)
A
array([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.],
[12., 13., 14., 15.],
[16., 17., 18., 19.]])
A.T
array([[ 0., 4., 8., 12., 16.],
[ 1., 5., 9., 13., 17.],
[ 2., 6., 10., 14., 18.],
[ 3., 7., 11., 15., 19.]])
1.3.4 张量
X = np.arange(24).reshape(2,3,4)
X
array([[[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.]],
[[12., 13., 14., 15.],
[16., 17., 18., 19.],
[20., 21., 22., 23.]]])
1.3.5 张量算法的基本性质
A = np.arange(20).reshape(5,4)
B = A.copy()
A, A + B
(array([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.],
[12., 13., 14., 15.],
[16., 17., 18., 19.]]),
array([[ 0., 2., 4., 6.],
[ 8., 10., 12., 14.],
[16., 18., 20., 22.],
[24., 26., 28., 30.],
[32., 34., 36., 38.]]))
A * B, A**2
(array([[ 0., 1., 4., 9.],
[ 16., 25., 36., 49.],
[ 64., 81., 100., 121.],
[144., 169., 196., 225.],
[256., 289., 324., 361.]]),
array([[ 0., 1., 4., 9.],
[ 16., 25., 36., 49.],
[ 64., 81., 100., 121.],
[144., 169., 196., 225.],
[256., 289., 324., 361.]]))
a = 2
X = np.arange(24).reshape(2,3,4)
a + X, (a * X).shape
(array([[[ 2., 3., 4., 5.],
[ 6., 7., 8., 9.],
[10., 11., 12., 13.]],
[[14., 15., 16., 17.],
[18., 19., 20., 21.],
[22., 23., 24., 25.]]]),
(2, 3, 4))
1.3.6 汇总
x = np.arange(4)
x, x.sum()
(array([0., 1., 2., 3.]), array(6.))
A, A.shape, A.sum()
(array([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.],
[12., 13., 14., 15.],
[16., 17., 18., 19.]]),
(5, 4),
array(190.))
A_sum_axis0 = A.sum(axis = 0)
A_sum_axis0, A_sum_axis0.shape
(array([40., 45., 50., 55.]), (4,))
A_sum_axis1 = A.sum(axis = 1)
A_sum_axis1, A_sum_axis1.shape
(array([ 6., 22., 38., 54., 70.]), (5,))
A.sum(axis = [0,1])
A.mean(), A.sum() / A.size
(array(9.5), array(9.5))
A.mean(axis = 0), A.sum(axis = 0) / A.shape[0]
(array([ 8., 9., 10., 11.]), array([ 8., 9., 10., 11.]))
sum_A = A.sum(axis = 1, keepdims = True)
sum_A
array([[ 6.],
[22.],
[38.],
[54.],
[70.]])
A / sum_A
array([[0. , 0.16666667, 0.33333334, 0.5 ],
[0.18181819, 0.22727273, 0.27272728, 0.3181818 ],
[0.21052632, 0.23684211, 0.2631579 , 0.28947368],
[0.22222222, 0.24074075, 0.25925925, 0.2777778 ],
[0.22857143, 0.24285714, 0.25714287, 0.27142859]])
A.cumsum(axis = 0)
array([[ 0., 1., 2., 3.],
[ 4., 6., 8., 10.],
[12., 15., 18., 21.],
[24., 28., 32., 36.],
[40., 45., 50., 55.]])
1.3.7 点积
y = np.ones(4)
x, y, np.dot(x, y), np.sum(x * y)
(array([0., 1., 2., 3.]), array([1., 1., 1., 1.]), array(6.), array(6.))
1.3.8 矩阵-向量积
A.shape, x.shape, np.dot(A, x)
((5, 4), (4,), array([ 14., 38., 62., 86., 110.]))
1.3.9 矩阵-矩阵乘法
B = np.ones(shape = (4,3))
np.dot(A, B)
array([[ 6., 6., 6.],
[22., 22., 22.],
[38., 38., 38.],
[54., 54., 54.],
[70., 70., 70.]])
1.3.10 范数
u = np.array([3,-4])
np.linalg.norm(u)
array(5.)
np.abs(u).sum()
array(7.)
np.linalg.norm(np.ones((4,9)))
array(6.)