自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(23)
  • 资源 (1)
  • 收藏
  • 关注

原创 Pycharm安装numpy库出错

今天在Pycharm“设置”中安装numpy始终无法成功 一直显示正在安装,但是很久很久都安装不好,有时还会报错 解决办法: 直接在电脑的cmd框中输入:python -m pip install numpy 进行安装...

2019-02-25 10:17:50 7580 1

原创 C++ bindings for libpmemobj(part 0 - part 3)

参考链接: http://pmem.io/2016/01/12/cpp-01.html   Part 0 有关之前 C 语言的 libpmemobj 库的目标是在不修改编译器的条件下实现持续性存储的所有功能,但是只能在低级软件和语言。 而 libpmemobj C++ 库是更高级的语言,减少错误并且具有更好的API。更多专注修改 structs 和 classes,而对函数共能只做简单修...

2019-01-21 16:40:47 541

原创 An introduction to pmemobj (part 5) - atomic dynamic memory allocation

参考链接:https://pmem.io/2015/06/18/ntx-alloc.html 所用 API 接口:https://github.com/pmem/pmdk/blob/master/src/include/libpmemobj POBJ_ZNEW() // 从内存池中间分配一个已经归零的新对象 POBJ_ZALLOC() // 同上,只是具体参数不同,详情参考链接 POBJ_...

2018-12-30 10:47:51 320

原创 An introduction to pmemobj (part 4) - transactional dynamic memory allocation

参考链接:https://pmem.io/2015/06/17/tx-alloc.html TX_** 系列函数的定义 参考链接:https://github.com/pmem/pmdk/blob/master/src/include/libpmemobj/tx.h Homework 个人看法: 这段代码的实际含义: void rectangle_modify(TOID(stru...

2018-12-28 14:00:27 344

原创 An introduction to pmemobj (part 3) - types

参考链接:https://pmem.io/2015/06/16/types.html API函数 POBJ_ROOT() //代替 pmemobj_root() 函数 D_RW() //写入(根节点) D_RO() //读取(根节点) TX_MEMCPY() //代替memcpy 对事务进行操作 为了提供类型安全性,在持续性内存编程前需要明确的 layout 声明,以字符串存储为例的 ...

2018-12-24 19:33:25 396

原创 An introduction to pmemobj (part 2) - transactions

参考链接:https://pmem.io/2015/06/15/transactions.html API 函数: pmemobj_tx_process() //用来移动事务 pmemobj_tx_abort() //状态跳转 pmemobj_tx_add_rang(root object,offset,size) //将 root 指针偏移 offset 个偏移量后,size 个大小的空...

2018-12-24 19:21:38 306

原创 An introduction to pmemobj (part 1) - accessing the persistent memory

参考链接:https://pmem.io/2015/06/13/accessing-pmem.html 这篇文章主要还是纯C语言有关 全文API函数: pmemobj_creat() //创建持久化内存池 pmemobj_open() //打开已创建的持久化内存池 pmemobj_close() //释放内存池 pmemobj_check() //验证内存池元数据一致性 pmemob...

2018-12-23 21:51:38 405

原创 完成Persistent Memory的模拟

  过程主要参考: https://nvdimm.wiki.kernel.org/how_to_choose_the_correct_memmap_kernel_parameter_for_pmem_on_your_system https://software.intel.com/zh-cn/articles/how-to-emulate-persistent-memory-on-an-i...

2018-12-17 18:01:31 1510

原创 Ubuntu内核版本更新到4.20

原始版本 4.15 更新到 4.20 因为最近在做Persistent Memory Programming   下面是我的虚拟机原始版本   首先打开网页 http://kernel.ubuntu.com/~kernel-ppa/mainline/ 并选择最下面的版本   然后点进去看到适合自己(我是 amd64)的文件链接   然后复制以上链接并在命令框中执行,下...

2018-12-12 22:48:59 2866

原创 win2003 R2 SP2 x64 可用密钥

2018-12-11亲测可用   MR78C-GF2CY-KC864-DTG74-VMT73

2018-12-11 22:10:14 9400 19

原创 《C++Primer》第五版 第一章编程题部分答案

练习1.9 #include<iostream> using namespace std; int main() { int val = 50, sum = 0; while (val <= 100) { sum += val; ++val; } std::cout << "Sum of 50 to 100 inclusive is:" &lt...

2018-10-01 15:09:54 288

原创 在VS2017上配置CMake并生成OpenCV源代码工程的解决方案

这篇博客是对之前博客《在win10下配置VS2017搭载OpenCV4.0》的补充,还没有配置好VS2017+OpenCV的小伙伴可以参考一下我之前的博客。   一、为什么用CMake? 想要在 Windows 平台下生成 OpenCV 的解决方案,需要一个名为 CMake 的开源软件。note:CMake,是 “crossplatform make” 的缩写,它是一个跨平台的安装(编译)工...

2018-09-26 22:31:40 2800

原创 基于更深卷积网络的大规模图像识别——阅读笔记

这篇文章是根据之前有一篇翻译的文献而来,翻译见前面的博客: https://blog.csdn.net/D_____S/article/details/82825322 第一次读外文文献,理解起来非常困难,参考了网上的不少资料。 之后会学习如何复现此网络,复现过程将在接下来的博客上更新。   一、VGG的意义 这篇论文之所以简称为 “VGG” 是因为出自牛津大学 Oxford Visua...

2018-09-26 20:51:28 817

原创 在win10下配置VS2017搭载OpenCV4.0

其实刚开始不准备入门OpenCV的,现在CV岗感觉好激烈,我觉得自己入了也是当炮灰,但是实验室有点事情必须要用OpenCV,没办法我还是要学一下。 找了很久配置OpenCV4.0,网上的大神们有很多配置方法,但是我觉得OpenCV3版本可能跟4还是略有一点不同。 我电脑里面很早就有VS2017,在下面就不介绍了,直接从OpenCV开始。 (本文没有配置 CMake,配置 CMake 的博文在...

2018-09-24 10:10:34 12444 9

原创 基于更深卷积网络的大规模图像识别

       本文是 “VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION” 文章的翻译,第一次读外文文献,不知道该怎么选文献,就挑了比较新也出名的“VGG”文献来进行翻译。之后对它的进一步解读将在下一篇博客中写出。全文翻译非常业余,只求看懂就行。实际上这篇文献已经被很多大佬翻译并解读过了,我选它主要是为了在翻译和解...

2018-09-23 22:29:40 1318

原创 安装VMware Tools并实现主机PC与Ubuntu虚拟机的文件共享

这个问题实际上是在上一篇博客中出现的问题,在这里统一解决一下。 在上一个博客上需要把手写数字变成 .png 图片文件放入 linux 文件夹中,这里我想到的解决方案就是将 PC 上的文件夹与 linux 虚拟机共享。 具体过程是这样: 一、安装 VMware Tools 在页面上选择 “虚拟机” ——》“安装VMware Tools” 然后点击桌面图标 VMware Tools, 复制文...

2018-09-10 15:02:36 545

原创 Tensorflow学习之手写数字识别

前言:很久没有更新了,主要是最近也有很多事情,一个人学习新知识总是有点坚持不下来,前面的知识也没能很好的理解,存在的问题比较多。调试比较难调,在虚拟机里面总是报 “memory error” 或者 “已杀死”,但是重开一遍又没有了,在运行途中也总会出现这样的问题,让我很烦恼,只有自己一个人慢慢调。这几天也坚定了学习代码的心,后面的更新应该会更规律更频繁。本节内容其实是一小节,我觉得也很有必要整理一...

2018-09-10 14:29:10 606

原创 Tensorflow学习之MNIST数据集

前言:        最近有段时间没学习了,主要是MNIST数据集这一节的代码很多错误,比较难调试,而且每次报的错误还不一样,在网上百度又尝试了好多种解决办法最后才解决,挺烦的。还有就是自己本来选的人工智能方向,但是导师在这个方向貌似资源比较少,估计开学了就准备换个硬件方向了,一直都在怀疑自己还应不应该继续学Tensflow。最后就是,自己这段时间超级想买个Ipad Pro,也不知道是怎么会使,...

2018-08-14 22:34:44 9416 1

原创 Tensorflow学习之神经网络优化

一、损失函数 神经元模型:用数学公式表示为:,f为激活函数,神经网络是以神经元为基本单元构成的。 激活函数:引入非线性激活因素,提高模型的表达力 常用的激活函数有relu、sigmoid、tanh等。 神经网络的复杂度:可用神经网络的层数和神经网络中待优化的参数个数来表示 神经网络的层数:一般不计入输入层,层数= n 个隐藏层 + 1 个输出层 神经网络待优化参数:神经网络中所有参...

2018-08-03 16:54:41 1324

原创 Tensorflow学习之搭建神经网络

搭建神经网络 一、基本概念 基于Tensorflow的NN:用张量表示数据,用计算图搭建神经网络回话执行计算图,优化线上的权重(参数),得到模型。 张量:就是多维数组(列表),用“阶”表示张量的维度。 0阶张量就是一个数; 1阶张量是xia向量,表示一个一维数组,V=[1,2,3]; 2阶张量就是矩阵。表示一个二维数组,m=[[1,2,3], [4,5,6], [7,8,9]] 判断...

2018-07-30 22:17:42 382

原创 Tensorflow学习之Python的基础知识

Tensflow笔记之Python 简单知识总结 常用指令 pwd 打印当前在哪个目录 ls 列出当前路径下的文件和目录 Mkdir  目录名 新建目录 cd     目录名 进到指定目录 python ...

2018-07-29 00:05:41 879

原创 在Linux虚拟机上安装Python和Tensorflow

由于我在MOOC上跟一个课程,用的版本比较老: (1)python 2.7;(2)Tensorflow 1.3.0 (一)在虚拟机中的浏览器上搜索“清华大学镜像源Tensorflow” (二)然后将设置改成“CPU”“cp27”“1.3.0”,然后复制下面那一段代码粘贴到Ubuntu命令行 然后会提示你“pip”没有安装,接着安装python-pip 如图所示就已经安装成...

2018-07-27 23:33:32 4533

原创 win10系统上安装Linux虚拟机

用到的资源: (1)VMware Workstation Pro 14.1.2(2)Ubuntu 18.04. (一)首先在官网上(https://www.vmware.com/cn.html)下载VMware Workstation Pro 在下面这个页面注册一个账号并登陆就能下载Windows版本的。 (二)在Ubuntu官网上(https://www.ubuntu.com/d...

2018-07-27 00:36:57 3838

C++ 基础.png

C++基础知识框图,个人必备基础知识,用于复习,备考,找工作等等都有帮助,帮助萌新梳理知识点,帮助大佬温习知识点,本人费心整理的,希望大家喜欢。

2020-07-13

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除