THLabel

下午3:08

//阴影颜色

       [self.label1 setShadowColor:[UIColor blackColor]];

   //阴影偏移量

       [self.label1setShadowOffset:CGSizeMake(0.0f, 2.f)];

   //模糊偏移量

       [self.label1setShadowBlur:5.f];

   //粗细颜色(无用)

       [self.label1setStrokeColor:[UIColorredColor]];

   //字体粗细

       [self.label1setStrokeSize:4.5f];

   //开始色值

                [self.label1 setGradientStartColor:[UIColor colorWithRed:0.f / 255.0f green:193.0f / 255.0f blue:127.0f / 255.0f alpha:1.0f]];

   //结束色值

       [self.label1setGradientEndColor:[UIColor colorWithRed:255.0f / 255.0fgreen:163.0f/ 255.0f blue:64.0f / 255.0f alpha:1.0f]];

 

内容概要:本文介绍了基于Zernike矩的乳腺肿块良恶性分类方法,结合快速相反权重学习规则,在Matlab平台上实现了医学图像特征提取与分类的自动【基于Zernike矩的良性和恶性肿块的分类】应用于乳腺癌诊断中的快速相反权重学习规则(Matlab代码实现)化流程。Zernike矩用于提取乳腺肿块的形状和纹理特征,具有良好的旋转不变性,适用于医学图像分析;快速相反权重学习规则则用于优化分类过程,提高诊断准确率和效率。文中提供了完整的Matlab代码实现,便于研究人员复现和进一步优化算法。此外,文档还列举了多个相关科研方向和技术应用,展示了该方法在生物医学工程与智能诊断系统中的潜力。; 适合人群:具备一定Matlab编程基础,从事医学图像处理、模式识别、人工智能或生物医学工程领域的研究生、科研人员及工程技术人员。; 使用场景及目标:①应用于乳腺癌早期辅助诊断系统,提升医学影像分析的自动化水平;②作为科研教学案例,帮助理解图像特征提取(如Zernike矩)与智能分类算法的结合应用;③为优化医学图像分类模型提供可复现的技术路径与代码参考。; 阅读建议:建议读者结合提供的Matlab代码逐模块运行与调试,深入理解Zernike矩的特征提取机制及分类器训练过程,同时可拓展学习文档中提及的相关算法(如支持向量机、深度学习等),以构建更高效的医学图像分析系统。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值