自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

此星光明博客

地理信息和卫星遥感云计算专业指导

  • 博客(4636)
  • 资源 (1934)
  • 收藏
  • 关注

原创 GEE AI:融合大语言模型LLM(Gemini)和geemap的交互式云计算

EE Genie笔记本使用指南 EE Genie笔记本提供双栏视图:左侧显示聊天记录,右侧为交互式geemap地图。用户可通过底部的默认提示语(如"展示澳洲大陆DEM高程图")直接回车执行,或输入自定义指令操作地图。系统会将地图拼接后发送给AI模型生成描述。 使用前需准备: Earth Engine访问权限 Google API密钥(需创建云项目并关联) 安装步骤: 安装必要包(geedim, tenacity等) 进行Earth Engine身份认证 初始化存储客户端和地图实例 注意事

2025-09-11 15:30:00 622 1

原创 ESA CCI 全球森林地上生物量(2007-2022)

摘要: ESA CCI发布的全球森林地上生物量数据集(v6.0)覆盖2007-2022年共10个年份,整合了Sentinel-1、Envisat ASAR、ALOS卫星等多源遥感数据,并采用改进的异速生长方程(基于GEDI和ICESat-2激光雷达数据)及反演算法,显著提升了数据精度。该数据集包含地上生物量(AGB,单位:吨/公顷)及其标准差栅格图层,以及1-50公里不同分辨率的聚合产品和年际变化产品(含变化量、标准差及质量标志)。与v5相比,v6新增2007和2022年数据,优化了时间一致性。数据以Net

2025-09-11 09:00:00 10

原创 Google Earth Engine(GEE)——合成孔径雷达 (SAR) 基础知识哨兵一号

Sentinel 传感器数据由欧盟的哥白尼计划生成,该计划得到欧洲航天局 (ESA) 的运营支持。Copernicus Sentinel 数据在完全、免费和开放的许可下提供。该许可证使 Google 可以将数据集成到他们的收藏目录中,并将其公开给许多 GEE 用户。ESA 应用 SAR 处理从原始 Sentinel-1 信号数据以 2 种格式生成 Level-1 数据:单视复合 (SLC) 和检测到的地面范围 (GRD)。干涉和部分极化参数提取需要 SLC(它包含相位和幅度信息),而 GRD 只是强度(

2025-09-11 08:30:00 21

原创 GEE python:绘制降水与洪水监测图

本文介绍了使用Google Earth Engine和Python进行地理空间数据分析的方法,包含两个主要应用:1) 基于ERA5月数据的伊朗地区降水量可视化,通过xee库转换为xarray数据集后绘制2018-2020年降水等值线图;2) Sentinel-1雷达数据分析,通过对比2019年3-4月VV极化影像差异监测洪水影响区域。代码展示了从数据获取、处理到可视化的完整流程,适用于气候监测和灾害评估,最终输出高分辨率降水分布图和洪水前后对比图。

2025-09-11 07:30:00 9

原创 GEE训练教程:墨西哥巴亚尔塔港至拉布法地区的海岸-内陆气候梯度变化

摘要:本文介绍了利用Google Earth Engine平台分析墨西哥巴亚尔塔港至拉布法地区海岸-内陆气候梯度的方法。研究通过定义60公里样带,整合WorldClim生物气候数据(年均温和降水量),计算距离梯度并建立多波段数据集。关键技术包括样带采样、坐标系统转换(UTM投影)和双轴可视化,揭示了沿海-内陆气候过渡特征。该方法为气候梯度研究、农业规划和水资源管理提供了有效工具,通过GEE代码实现了从数据准备、距离计算到可视化分析的全流程。

2025-09-11 02:47:52 11

原创 大气成分氨体积混合比 L3 (AIRSAC3MNH3 V3) 来自 NASA Aqua 上的 AIRS/AMSU,位于 GES DISC

大气中氨的质量浓度由用于研究大气氨的生成物组成。大气氨是全球氮循环的重要组成部分。在对流层中,氨与硫酸和硝酸等酸快速反应形成细颗粒物。这些含氨气溶胶会影响地球的辐射平衡,既直接影响入射辐射,也间接影响云凝结核。大气氨的主要来源包括农业活动,包括畜牧业,尤其是集约化动物饲养和化肥使用。大气氨的主要汇包括干沉降和降水的湿迁移,以及与酸反应转化为颗粒氨。大气中氨的测量值很少,但卫星提供了一种监测全球大气成分的方法。

2025-09-11 02:41:24 660

原创 GEE APP:一个国家二级行政单元的全球矢量边界查看应用

本文介绍了一种基于Google Earth Engine(GEE)的交互式行政区划选择工具开发方法。该工具通过GAUL 2015二级行政区划数据集,实现了国家-地区两级联动下拉菜单功能,支持快速定位特定分析区域并在地图上高亮显示。系统采用分割面板设计,左侧为包含日期筛选器的控制面板,右侧展示地图。核心功能包括动态填充下拉选项、"全部"地区选择以及响应式地图显示。该工具可广泛应用于遥感数据分析、环境监测、灾害评估等领域,并提出了集成更多数据源、添加统计功能等扩展建议。文章详细解析了数据加载

2025-09-10 17:00:00 10

原创 GEE AI:通过 LLM 使用 Google Earth Engine 进行遥感数据网络可视化

摘要 本文介绍了一款创新性的地理空间分析应用程序,通过整合大型语言模型(LLMs)与Google Earth Engine(GEE)平台,实现了卫星图像和土地利用数据的智能化可视化分析。系统采用三层架构设计:基于React的前端交互层、集成GPT-4的自然语言处理层和GEE地理数据处理层。用户可通过自然语言指令(如"显示东京2024年1-3月影像")获取专业的地理空间分析结果,包括多源卫星数据、时间序列分析和专题地图生成等功能。相比传统方法,该系统具有响应速度快(3秒内)、操作门槛低、可

2025-09-10 16:19:14 50

原创 Google Earth Engine:如何在GEE中实现精准对齐网格技巧

本文介绍了在Google Earth Engine中定义和网格对齐关注区域(AOI)的方法。首先创建矩形AOI几何体,然后通过定义0.25度的网格步长,使用snapPt函数将各顶点坐标四舍五入对齐到网格。最后重构多边形并添加容差处理确保几何有效性,同时在地图中对比显示原始(黑色)和对齐后(红色)的AOI边界。该方法能有效提高地理数据分析和可视化的一致性和准确性。

2025-09-10 10:00:00 18

原创 美国官方的国家级陆地和海洋保护区清单数据集

PAD-US是美国国家级陆地和海洋保护区数据库,包含四类数据资产:指定区域、地役权、费用和公告。该数据库整合各机构最佳可用数据,记录保护区边界、管理状态(GAP状态代码)和IUCN保护类别等信息。需注意数据存在边界差异和重叠问题,建议使用"费用"资产计算总面积。PAD-US 2.0提供可视化保护状态图层(1-4级),适用于宏观分析,但不建议用于小尺度精确测量或法律用途。数据通过doi:10.5066/P955KPLE引用,由美国地质调查局维护更新。

2025-09-10 07:00:00 743

原创 GEE训练教程:基于标准化降水指数(SPI)和归一化植被指数(NDVI)干旱与植被分析

本文介绍了利用Google Earth Engine平台进行干旱监测与植被响应分析的方法。研究选取美国西南部为区域,通过MODIS NDVI数据监测植被状况,结合CHIRPS降水数据计算标准化降水指数(SPI)。分析流程包括:1)定义研究区域;2)准备NDVI植被指数数据;3)计算年度降水量;4)计算SPI干旱指标;5)数据可视化展示;6)采样点相关性分析。结果显示SPI与NDVI呈正相关关系,表明降水增加促进植被生长。该方法具有云端处理、免费数据、自动化流程等技术优势,可应用于农业管理、水资源规划和灾害预

2025-09-09 19:17:13 20 1

原创 全球地面沉降数据集

开发的模型以高空间分辨率(约 2 公里)预测全球地面沉降幅度,提供由于全球每年约 17 公里3的固结导致的含水层储存损失的一阶估计,并量化沉降的关键驱动因素。该数据集的重点是通过使用先进的地理空间和建模技术创建全球地面沉降数据集。这项研究的成果包括对全球地面沉降幅度的综合估计、对固结导致的含水层储存损失的一级评估以及驱动沉降的关键因素的量化。已处理的训练沉降数据、已处理的输入变量、训练 csv 文件和运行建模脚本的参考文件,以及模型的全局沉降和沉降概率预测栅格,可在此 HydroShare 存储库。

2025-09-09 15:45:55 365

原创 用于沉淀和夹带研究的水同位素系统(WISPER)的影响

用于降水和夹带研究的水同位素系统 (WISPER) IMPACTS 数据集包含凝结水含量、水蒸气测量值和同位素比值,用于支持大西洋沿岸威胁性暴风雪微物理和降水调查 (IMPACTS) 实地考察活动。IMPACTS 是为期三年的冬季部署项目,旨在研究美国大西洋沿岸的暴风雪(2020-2023 年)。该活动旨在 (1) 提供对理解雪带形成、组织和演化机制至关重要的观测数据;(2) 研究雪粒的微物理特征及其可能的生长机制在不同雪带之间的差异;(3) 改进降雪遥感解译和建模,以显著提高预测能力。

2025-09-09 15:41:18 842

原创 GEE训练教程:特定区域内各行政区2005-2024年生长季的NDVI并可视化

本文介绍了利用Google Earth Engine平台对2005-2024年特定区域NDVI进行时序分析的方法。通过加载行政区划数据,筛选目标区域,并使用ESA WorldCover创建农田掩膜,结合MODIS NDVI数据,分析各行政区生长季植被变化。关键技术包括时间筛选(5-10月)、空间筛选(农田区域)和行政区统计单元分析。结果以CSV格式导出,可用于农业监测、政策评估和气候变化研究。方法具有250米空间分辨率和20年时间跨度,为生态环境管理提供科学依据。

2025-09-09 15:40:57 15

原创 GEE土地分类:基于不同机器学习方法和多源遥感的土地分类(kappa系数、整体精度和混淆矩阵、变量重要性)

基于Google Earth Engine的土地覆盖分类方法 摘要:本文介绍了一种利用Google Earth Engine平台,结合Sentinel-2卫星影像和ESA WorldCover数据进行土地覆盖分类的机器学习方法。研究采用分层采样策略,针对8类主要地物(树木、灌木、草地、农田、建设用地、裸地、水体和湿地)进行建模。通过计算NDVI、NDWI和NBR等光谱指数增强特征,比较了CART决策树和随机森林两种算法的分类效果。方法包含完整的预处理流程、模型训练和精度评估(混淆矩阵、Kappa系数、总体精

2025-09-09 10:00:00 23

原创 GEE错误:Image.reduceRegion: Provide ‘geometry‘ parameter when aggregating over an unbounded i

本文介绍了在GEE平台进行区域统计时遇到的错误及解决方法。错误是因reduceRegion函数参数使用不当导致的,具体表现为将矢量集合而非几何对象传入geometry参数。原代码中,delhiBoundary作为要素集合被直接使用,而正确的做法是应调用.geometry()方法将其转换为几何对象。修改后代码通过将delhiBoundary.geometry()作为参数传入,成功解决了"Provide 'geometry' parameter"报错问题,并最终实现了预期统计效果和可视化输出

2025-09-09 09:00:00 1319

原创 GEE AI 土地分类:基于Resnet的土地分类详细教程3(加载模型训练和对指定区域进行训练)

文章摘要:本文详细介绍了在Google Colab环境下进行地理空间数据处理和分析的完整流程。首先安装必要的Python库(如geopandas、rasterio、geemap等),然后通过Google Drive挂载和Earth Engine验证建立工作环境。核心内容包括:1)从geoBoundaries获取行政区划数据并随机采样;2)使用Google Earth Engine API下载指定区域的Sentinel-2卫星影像;3)将影像导出为GeoTIFF格式存储到Google Drive。文中提供了完

2025-09-09 07:00:00 21

原创 GEE训练教程:MODIS影像森林覆盖率和面积估算以及可视化

定义分析区域和时间范围。导入必要的数据,包括国际边界、保护区和 MODIS 影像。实现光谱混合分析 (SMA) 和森林覆盖率计算。生成森林覆盖率的统计数据和变化图表。将结果可视化并添加到地图查看器中。在脚本的第一部分,我们定义了要分析的区域(aoi)和时间范围(date_start和date_end用户可以根据需要修改这些参数。本博客可以让大家分析特定区域的森林覆盖变化,并获取相关的统计信息。这对于环境监测和研究非常有帮助。

2025-09-08 22:37:02 282

原创 天气研究与预报 (WRF) 模型 IMPACTS V1

天气研究与预报 (WRF) 模型 IMPACTS 数据集包括由天气研究与预报 (WRF) 模型为大西洋沿岸威胁性暴风雪的微物理和降水调查 (IMPACTS) 实地活动模拟的模型数据。IMPACTS 是为期三年的冬季部署项目,旨在研究美国大西洋沿岸的暴风雪(2020-2022 年)。该活动旨在 (1) 提供对理解雪带形成、组织和演变机制至关重要的观测数据;(2) 研究雪粒的微物理特性和可能的​​生长机制如何随雪带而变化;(3) 改进降雪遥感解译和建模,以显著提高预测能力。

2025-09-08 22:27:01 739

原创 GEE训练教程:基于Landsat 8卫星影像识别并提取指定区域内无云覆盖的区域多边形,最终导出为矢量文件

本文介绍了一种利用Google Earth Engine平台从Landsat 8影像中提取无云区域的方法。通过定义研究区域、创建云检测算法(基于QA_PIXEL波段位运算)、筛选高质量影像(云量<10%),将无云区域转换为矢量多边形,最终导出为SHP或GeoJSON格式。该方法适用于生态环境监测、农业分析和海岸线研究,具有自动化程度高、处理效率高等优势,可为定量遥感分析提供高质量的无云数据基础。文章还提供了常见问题的解决方案和完整的实现代码。

2025-09-08 09:00:00 602

原创 GEE训练教程:2001-2024年火灾频率的分析(潘塔纳尔湿地)

本研究利用Google Earth Engine平台分析了2001-2024年潘塔纳尔湿地的火灾频率。通过MapBiomas火灾数据集,采用空间统计和可视化方法,揭示了火灾的空间分布特征和时间变化趋势。结果显示北部火灾频率高于南部,2020年特大火灾烧毁28%面积,不同保护单位间火灾频率差异显著。研究建议加强火灾监测、实施差异化保护策略和生态恢复项目。该分析展示了云端遥感大数据处理在生态环境监测中的高效性和可重复性优势。

2025-09-08 04:49:41 326

原创 在 GES DISC 进行 AIRS/Aqua L2 CO2 支持检索(仅限 AIRS)V005(AIRS2SPC)

大气红外探测器 (AIRS) 是搭载于第二个地球观测系统 (EOS) 极地轨道平台 EOS Aqua 上的一台光栅光谱仪 (R = 1200)。AIRS 与先进微波探测装置 (AMSU) 和巴西湿度探测器 (HSB) 结合,构成了一个由可见光、红外和微波传感器组成的创新型大气探测组。AIRS 支持产品包括标准产品中发现的量的更高垂直分辨率剖面图以及中间输出(例如,仅微波反演)、痕量气体丰度等研究产品以及详细的质量评估信息。支持产品剖面图包含 1100 至 0.016 mb 之间的 100 个气压级。

2025-09-08 04:14:13 558 1

原创 GEE训练教程:获取2015至2024年间的Sentinel-2卫星影像数据,生成并可视化多个波段的时间序列变化图表

本文介绍了一个基于Google Earth Engine平台的时间序列遥感分析方法。通过在经度115°、纬度33°的测试点创建100米和1000米缓冲区,获取2015-2024年Sentinel-2卫星影像数据。代码实现了两个可视化图表:1)测试点B1、B2、B3波段时间序列变化;2)比较点、100米和1000米区域B11波段变化。该方法利用空间缓冲区和时间序列分析,展示了不同空间尺度下遥感特征的变化趋势,为地理环境监测提供了一种有效的技术手段。

2025-09-07 13:00:00 22

原创 GEE APP:基于全球矢量数据和多源数据的影像数据查看和波段信息下载

本文介绍了一个基于Google Earth Engine开发的区域影像资源浏览器,该工具提供交互式地理空间数据浏览功能。主要特点包括: 使用FAO全球行政单元数据集(GAUL)支持按国家/地区筛选 将遥感数据按9大主题分类组织,包括光学影像、土地植被、气候等 采用分栏式UI设计,左侧为控制面板,右侧地图显示 核心功能实现包括: 国家/地区多级选择 按日期范围筛选数据 数据集解析与访问 波段信息可视化 该工具整合了Landsat、Sentinel等主流卫星数据,为用户提供便捷的区域影像资源浏览体验。

2025-09-07 10:00:00 20

原创 GEE AI:基于 YOLOv5: 进行卫星图像目标检测

本文介绍了一个基于YOLOv5的目标检测项目,用于处理Google Earth Engine导出的卫星图像。项目包含完整的实现流程:从YOLOv5环境配置和自动下载COCO128数据集,到模型训练(50个周期)和权重保存,再到对GEE导出图像进行推理检测,最后可视化检测结果。代码支持自动下载数据集、图像缓存加速训练,并提供了0.25的置信度阈值过滤检测结果。整个方案展示了如何将GEE遥感数据与YOLOv5模型结合,实现端到端的航拍图像目标检测。

2025-09-07 09:00:00 420

原创 2000 年至今全球的基于 EO 的初级生产总值数据集

该数据集提供了2000-2023年全球30米分辨率的未校准初级生产总值(uGPP),由Land & Carbon Lab Global Pasture Watch计划开发。数据采用光能利用率方法建模,整合了Landsat、MODIS温度和CERES光合有效辐射数据。所有土地覆盖类型统一设置最大光能利用率为1 gC/m²/天/MJ,方便用户后期校准。数据以双月为单位生成,经年累积后形成年度uGPP值(gC/m²/年)。主要限制包括输入数据分辨率差异导致的微气候条件遗漏、Landsat7传感器故障造成的

2025-09-07 07:00:00 760

原创 GEE训练教程:基于2001年-2202年土地分类数据的阿根廷草地稳定性遥感分析

本研究基于Google Earth Engine平台,分析了阿根廷开阔木本植被区2001-2022年的草地稳定性。通过筛选22年间MapBiomas土地覆盖数据,计算草地(地类代码4)出现频率,识别出22年持续稳定的草地区域。结果显示在250米分辨率下,部分区域始终保持草地覆盖。该分析为生态系统监测、土地退化评估和保护规划提供了重要依据,技术特点包括长时间序列分析、频率统计方法和自动化处理流程。研究成果以栅格图像形式输出,空间参考为WGS84坐标系。

2025-09-06 20:53:31 26

原创 来自 Howland 2003 活动的机载多角度成像光谱仪 (AirMISR) 数据

AIRMISR_HOWLAND_2003 数据是在 2003 年 8 月 28 日飞越缅因州豪兰森林的一次实地任务中获得的。加利福尼亚州帕萨迪纳的喷气推进实验室 (JPL) 提供了该数据。机载多角度成像光谱仪 (AirMISR) 是一种机载仪器,用于获取与星载多角度成像光谱仪 (MISR) 仪器类似的多角度图像,旨在为地球生态和气候研究做出贡献。AirMISR 搭载在 NASA ER-2 飞机上。加利福尼亚州帕萨迪纳的喷气推进实验室为 NASA 制造了该仪器。

2025-09-06 20:51:54 909

原创 GEE python:基于气候数据的降水分析和基于sentinel-1的洪水分析

本文介绍了使用Google Earth Engine和Python进行气象与洪水监测分析的技术流程。首先通过Earth Engine API获取伊朗地区2018-2020年的ERA5月降水量数据,转换为xarray数据集后绘制降水量等值线图;然后利用Sentinel-1 SAR数据,分析2019年3-4月洪水前后的地表变化。方法包括数据筛选、坐标转换、单位调整、时间序列处理和可视化制图,最终生成高分辨率的降水量分布图和洪水监测对比图。该技术流程实现了大规模遥感数据处理和灾害监测分析。

2025-09-06 09:00:00 22

原创 2000 年至 2022 年全球天然/半天然草地的年度概率地图数据集

全球天然/半天然草地年度概率地图(2000-2022年)以30米分辨率提供全球草地分布数据。该数据集由Landsat影像结合230万参考样本,通过机器学习生成,区分人工草地和天然/半天然草地(概率阈值分别为0.32和0.42)。数据存在部分区域低估和误分类问题,并受Landsat7条带影响。用户需注意数据限制,未来将通过Geo-Wiki平台持续改进。该数据集可用于监测草地变化,支持生态研究。

2025-09-06 07:00:00 1196

原创 GEE训练教程:基于Landsat 5的地表温度(LST)计算和可视化

该代码使用Google Earth Engine处理2004年Landsat 5影像,计算研究区域的地表温度(LST)。主要步骤包括:1)数据筛选获取低云量影像;2)热红外波段辐射定标;3)NDVI计算和植被比例估算;4)基于亮温和比辐射率计算LST;5)结果可视化与统计分析。最终输出温度分布图和区域平均温度值,实现了从遥感数据到地表温度产品的完整处理流程,为区域热环境研究提供了技术支持。

2025-09-05 16:17:27 74

原创 SatCORPS CERES GEO 版 4 Himawari-8 北半球版本 1.2

CER_GEO_Ed4_HIM08_NH_V01.2 是卫星云和辐射特性检索系统 (SatCORPS) 云和地球辐射能量系统 (CERES) 地球静止卫星 (GEO) 第 4 版北半球 (NH) 上空向日葵-8 卫星 1.2 版数据产品。数据使用向日葵-8 平台上的高级向日葵成像仪 (AHI) 仪器收集。注:1.2 版与 1.0 版相同。检索算法未做任何更改。

2025-09-05 15:55:29 878

原创 日本带状地图模式观测数据(3 米单极化)数据集

日本宇宙航空研究开发机构(JAXA)自2024年1月1日起在Google Earth Engine平台公开ALOS-2 PALSAR-2卫星的紧急观测数据,包括2024年1月1-3日和8日的3米分辨率单极化带状地图模式数据。这些2.1级数据经过正射校正处理,可用于灾害监测与分析。研究人员可通过提供的JavaScript代码调用不同日期范围的影像数据,并按照公式将DN值转换为分贝单位的反向散射系数。数据对公众免费开放,但仅限于非商业用途使用。

2025-09-05 08:30:00 360

原创 河狸水坝环境影响研究(Streamlit + Google Earth Engine)

摘要:河狸影响工具是一个基于Google Earth Engine和Sentinel-2卫星数据的网络分析平台,用于评估河狸水坝的生态效应。该工具由纽约大学团队开发,支持用户上传水坝位置坐标,自动生成对照点,并分析2018-2024年间NDVI、NDWI等生态指标的变化。通过10米分辨率卫星影像,系统可比较有水坝与无水坝区域的植被、水体指数差异,并计算月度均值。工具整合了高程掩膜、自动位置验证等功能,但受限于数据可用性,部分年份和区域的分析可能存在延迟。研究结果可为湿地恢复和生态管理提供量化依据,目前工具已

2025-09-05 08:00:00 560

原创 2000-2022年全球30米草地地图数据集

全球草地30米分辨率数据集(2000-2022年)由Land & Carbon Lab发布,包含人工草地和天然/半天然草地两类,采用Landsat影像结合机器学习方法生成。数据覆盖全球,但存在部分地区低估或误分类问题。该数据集通过随机森林算法和概率阈值划分草地类型,并提供可视化代码示例。用户在使用时需注意数据在非洲东南部、澳大利亚东部等区域的精度限制。相关成果已发表在Scientific Data期刊上。

2025-09-05 07:30:00 694

原创 GEE 案例:利用MODIS土地利用分类对sentinel-1(哨兵-1)各类别反向散射剖面图,构建箱形图方法

目录简介数据函数ee.Dictionary.fromLists(keys, values)Arguments:Returns: Dictionaryevaluate(callback)Arguments:ui.Chart(dataTable, chartType, options, view, downloadable)Arguments:Returns: ui.Chart代码结果利用GEE取土地利用的sentinel-1(哨兵-1)反向散射剖面图: 箱形图方法Sentinel-1是欧洲空间局(ESA)的一

2025-09-05 00:00:00 171

原创 GEE训练教程:MODIS MOD13Q1产品的NDVI数据进行干旱等级评价和分析

该代码基于MODIS NDVI数据实现植被干旱监测,通过计算植被状态指数(VCI)评估干旱程度。VCI根据当前NDVI值与历史极值比较得出,分为4个等级:极端干旱(VCI<20)、轻微干旱(20-35)、胁迫状态(35-50)和健康状态(≥50)。代码处理流程包括:1)加载MODIS数据;2)计算历史同期NDVI极值;3)生成VCI分类地图;4)输出区域平均VCI值。可视化结果用红-橙-黄-绿四色清晰标示不同干旱等级,示例区域平均VCI为42.61,显示植被处于胁迫状态。

2025-09-04 17:38:20 28

原创 CERES 每日白天区域平均 Terra 和 Aqua TOA 通量及相关云特性(按光学深度和有效压力分层)第 4A 版

CER_FluxByCldTyp-Day_Terra-Aqua-MODIS_Edition4A 是云和地球辐射能量系统 (CERES) 每日白天平均区域平均 Terra 和 Aqua 大气顶 (TOA) 通量和相关云特性,按光学深度和有效压力分层的 Edition4A 数据产品。数据是使用 Terra 上的 CERES 飞行模型 1 (FM1)、FM2 和中分辨率成像光谱仪 (MODIS) 以及 Aqua 上的 CERES-FM3、FM4 和 MODIS 收集的。数据收集正在进行中。

2025-09-04 17:30:53 934

原创 GEE训练教程:基于Sentinel-1 SAR卫星数据,实现对洪水事件的快速监测和严重程度评估

本文介绍了基于Google Earth Engine平台和Sentinel-1 SAR数据的洪水监测技术。该技术利用SAR数据全天候工作能力,通过分析洪水前后VV极化后向散射系数变化来识别淹没区域。处理流程包括:研究区域确定、数据筛选与预处理、影像合成与差异计算,以及基于后向散射系数变化的三级洪水严重程度分类(轻微、中等、严重)。该方法具有快速响应、客观评估和直观可视化等特点,可支持灾害应急响应、灾情评估和防灾规划等应用。文中还提供了完整的JavaScript代码实现,并提示了阈值调整和地形影响等注意事项。

2025-09-04 17:10:13 124

原创 CERES 每月格网辐射通量和云量 Terra FM1 版 2G

CER_FSW_Terra-FM1-MODIS_Edition2G 是云和地球辐射能量系统 (CERES) 月度格点辐射通量和云 Terra 飞行模型 (FM1) Edition2G 数据产品,该产品是使用 Terra 平台上的 CERES-FM1 和 CERES 扫描仪仪器收集的。该产品的数据收集已经完成。月度格点辐射通量和云 (FSW) 产品包含瞬时覆盖区计算通量的区域平均值[大气顶 (TOA)、表面和大气内(剖面)]、相关的 TOA 观测通量以及仅针对卫星过境时段的云参数。

2025-09-04 17:06:31 820

【地理信息科学】基于GEE平台的气候与地形数据融合分析:墨西哥沿海地区气温降水及高程沿程变化研究

内容概要:本文利用Google Earth Engine平台,通过定义从Puerto Vallarta到La Bufa的样线(transecto A),对地形、气候和遥感数据进行空间分析。研究加载了COPERNICUS DEM数字高程模型数据以获取海拔信息,并结合NASA ORNL的DAYMET气象数据集,提取夏季(2020年6–8月)和冬季(2019年12月–2020年2月)的最高温、最低温及降水量均值。同时,使用Landsat 8热红外波段(B10和B11)估算地表温度,并将所有变量沿样线进行空间采样,生成多变量随距离变化的折线图,展示海拔、降水、气温等要素的空间分布特征。; 适合人群:地理信息系统(GIS)与遥感相关专业的学生、研究人员,具备一定Earth Engine编程基础的技术人员; 使用场景及目标:①开展沿地理样线的多源环境数据集成分析;②可视化地形与气候要素的空间变化趋势;③学习Earth Engine中影像集合处理、区域统计与图表生成方法; 阅读建议:建议结合代码逐段运行,理解几何对象构建、影像筛选、波段运算、reduceRegion应用及图表配置逻辑,可修改时间范围或区域以拓展至其他研究区。

2025-09-09

遥感技术基于Google Earth Engine的卫星影像获取系统:地理编码与Landsat数据可视化应用设计

内容概要:本文介绍了一个用于认证和获取Google Earth Engine(GEE)卫星图像的Python脚本。脚本包含GEE认证、地理编码和图像获取三大功能。通过环境变量配置项目ID,脚本首先尝试初始化或执行认证流程,确保用户具备访问GEE的权限。随后,利用OpenStreetMap的Nominatim API将地理位置名称转换为经纬度坐标。最后,基于指定位置和时间范围,从Landsat 8等影像集合中检索并生成可视化图像的地图ID和访问令牌。代码结构清晰,具备错误处理机制,并提供了详细的使用说明和依赖配置建议。; 适合人群:具备Python编程基础,熟悉环境变量配置及API调用的开发者或地理信息系统(GIS)研究人员;适合初学者学习GEE集成与地理数据处理; 使用场景及目标:①实现Google Earth Engine的程序化认证与初始化;②将地名转换为地理坐标(地理编码);③按位置和时间范围获取卫星影像并生成可视化参数,适用于遥感分析、环境监测等应用; 阅读建议:使用前需完成GEE项目配置并设置环境变量,建议结合官方文档理解认证流程,实际运行时注意API调用频率限制与地理编码服务的使用规范。

2025-09-09

【遥感图像分析】基于Python的卫星影像分析系统测试:GEE服务与事件检测功能集成验证

内容概要:本文是一份用于测试卫星图像分析应用程序组件的Python测试脚本,重点验证GEE(Google Earth Engine)服务和分析服务的功能。通过单元测试对地理编码、卫星图像获取、事件分析参数提取等核心功能进行模拟和验证,并包含集成测试以检查后端健康状态。测试使用unittest框架和mock技术,确保各服务模块在不同输入下的正确性和稳定性。此外,脚本还提供了运行测试的主流程和结果汇总功能,便于开发人员快速确认系统可用性。; 适合人群:具备Python编程基础,熟悉unittest测试框架和Web API调用的开发人员或测试工程师,尤其是从事遥感、地理信息系统(GIS)或后端服务开发的相关技术人员; 使用场景及目标:①验证GEE服务中的地理编码与卫星图像请求功能是否正常;②测试分析服务中不同自然灾害事件(如洪水、干旱)对应的指数与阈值参数准确性;③检查后端服务健康状态,确保系统整体可运行; 阅读建议:此资源主要用于开发过程中的自动化测试,建议结合实际项目结构运行测试用例,理解各服务模块的接口设计与依赖关系,并根据需要扩展测试覆盖范围。

2025-09-09

【遥感图像分析】基于Python与Node.js的全栈应用启动脚本:卫星影像分析系统环境配置与服务管理工具设计

内容概要:本文介绍了一个用于启动“卫星图像分析器”应用程序的Python辅助脚本,该脚本自动化了开发环境的启动流程。脚本主要功能包括检查系统先决条件(如Node.js、Python、npm)、安装前端与后端依赖、启动前后端服务器,并在浏览器中自动打开应用界面。同时,脚本还包含对缺失依赖项的提示机制、环境文件(.env)的检测与提醒,并通过子进程方式分别启动前端(npm start)和后端(Python server.py)服务,确保两者并行运行。此外,脚本具备良好的用户交互设计,如依赖安装失败处理、键盘中断信号捕获以优雅关闭服务等。; 适合人群:熟悉Python和Node.js开发的中初级开发者,尤其是参与全栈或地理信息系统(GIS)相关项目的研发人员。; 使用场景及目标:①快速部署和启动基于前后端分离架构的卫星图像分析应用;②减少手动配置环境的出错概率,提升开发效率;③作为类似项目的自动化启动模板进行复用和扩展。; 阅读建议:此资源以实用脚本形式呈现,建议结合实际项目结构进行调试与修改,重点关注其错误处理机制与进程管理逻辑,理解如何通过Python统一管理多语言技术栈的服务启动流程。

2025-09-09

【地理信息处理】基于环境变量配置的GEE项目ID获取方法:遥感分析平台身份认证系统设计

内容概要:本文介绍了一个Python脚本,用于从环境变量中获取Google Earth Engine(GEE)项目ID。脚本通过`python-dotenv`库加载`.env`文件中的环境变量,并提供一个函数`get_gee_project_id()`来读取项目ID。若未设置项目ID或仍使用默认值“your-project-id”,则会提示警告信息并返回None,确保用户配置正确的GEE项目信息。该代码强调了安全性和配置管理的最佳实践,避免硬编码敏感信息。; 适合人群:具备Python基础、熟悉环境变量管理及使用Google Earth Engine的开发者或地理信息科研人员;尤其适合需要进行云平台项目配置的初、中级开发人员。; 使用场景及目标:①在本地或部署环境中安全配置GEE项目ID,避免泄露敏感信息;②通过.env文件管理不同环境的配置,提升代码可移植性与安全性;③为GEE应用开发提供基础配置支持,确保程序在缺少有效配置时能及时提醒。; 阅读建议:此资源适用于实际接入Google Earth Engine项目的开发场景,建议结合项目实践,在本地创建并正确填写.env文件,同时理解环境变量加载机制,以增强应用的安全性与灵活性。

2025-09-09

【地理信息处理】基于Python的Google Earth Engine认证辅助工具:环境配置与项目ID验证系统设计

内容概要:本文介绍了一个用于帮助用户完成 Google Earth Engine(GEE)认证的 Python 脚本。该脚本通过加载环境变量获取 GEE 项目 ID,检查是否已认证并尝试初始化 Earth Engine;若未认证,则引导用户进行身份验证,确保其拥有正确的项目配置和权限。脚本具备清晰的提示信息,包括错误排查步骤和解决方案,帮助用户顺利完成认证流程。核心功能涵盖环境变量读取、项目 ID 验证、GEE 认证与初始化等。; 适合人群:具备基础 Python 编程能力,正在使用或尝试接入 Google Earth Engine 的开发者或科研人员,尤其是初学者;; 使用场景及目标:① 配置和验证 GEE 开发环境;② 解决因项目 ID 错误或认证缺失导致的初始化失败问题;③ 自动化引导用户完成首次认证流程; 阅读建议:使用前请确保已创建 Google Cloud 项目并启用 Earth Engine API,正确填写 .env 文件中的项目 ID。建议结合配套文档 GEE_AUTHENTICATION.md 一起查阅,以获得完整的配置指导和故障排除信息。

2025-09-09

【地理信息科学】基于Google Earth Engine的气候地形分析:墨西哥Puerto Vallarta地区气温降水与高程关系研究

内容概要:本文通过使用Google Earth Engine(GEE)平台,对墨西哥Puerto Vallarta至La Bufa地区的地理与气候数据进行分析。利用COPERNICUS/DEM/GLO30数据集获取数字高程模型(DEM),并结合NASA/ORNL/DAYMET_V4气象数据集,分别提取夏季(2020年6-8月)和冬季(2019年12月至2020年2月)的日最高温(tmax)、最低温(tmin)和降水量(prcp)数据,计算其平均值并进行空间可视化。进一步沿指定断面(transecto_A)提取高程、降水和温度随距离变化的数据,生成包含多变量的数组,并绘制沿程变化折线图,展示地形与气候要素的空间关系。; 适合人群:具备基础地理信息系统(GIS)知识和GEE平台使用经验的科研人员或学生,熟悉JavaScript脚本编写者更佳;适用于环境科学、地理学、生态学等领域研究者。; 使用场景及目标:①分析特定地理断面上地形与气候因子(温度、降水)的空间分布规律;②掌握GEE中影像集合的筛选、统计、叠加与可视化方法;③实现多源遥感数据融合与图表输出,支持区域环境变化研究。; 阅读建议:此资源以实际代码操作为主线,建议读者在GEE平台上逐行运行并理解代码逻辑,重点关注reduceRegion、toArray、ui.Chart等关键函数的应用,结合地图与图表结果深入理解空间数据分析流程。

2025-09-09

【地理信息系统】基于Google Earth Engine的气候数据空间分析:墨西哥普埃托瓦亚塔至拉布法沿线温降与降水分布建模研究

内容概要:本文通过使用Google Earth Engine(GEE)平台,对墨西哥Puerto Vallarta至La Bufa区域的气候数据进行空间分析与可视化。主要操作包括定义地理断面线(Transecto A),加载世界气候数据集(WORLDCLIM)中的年均温度(bio01)和年降水量(bio12)栅格图层,并提取沿断面的环境变量值。通过计算从起点Puerto Vallarta出发的距离缓冲带,结合重投影到EPSG:32613坐标系,对距离、温度和降水数据进行采样与排序,最终生成随距离变化的气候要素折线图,展示温度与降水沿断面的空间变化趋势。; 适合人群:具备地理信息系统(GIS)基础知识、熟悉遥感数据分析及有一定GEE平台使用经验的科研人员或学生;适合从事生态学、气候学或环境科学相关研究的人员; 使用场景及目标:①用于研究沿地理断面的气候要素梯度变化规律;②实现空间数据的采样、排序与多变量图表可视化,支持环境变量相关性分析与生态建模前的数据处理; 阅读建议:此脚本适合在GEE云平台上运行实践,建议结合实际研究区域调整地理位置与参数设置,并深入理解reduceRegion、reproject、ui.Chart等核心函数的应用逻辑。

2025-09-09

【地理信息系统】基于Google Earth Engine的Jalisco州数字高程模型与坡度坡向分析:多源DEM数据融合与地形可视化系统实现

内容概要:本文是一段用于地理空间分析的Google Earth Engine(GEE)脚本代码,主要实现了对墨西哥哈利斯科州(Jalisco)区域的地形数据处理与可视化。脚本加载了该地区的行政边界,并计算其几何中心点作为地图中心。随后引入了两种数字高程模型(MDE):WWF HydroSHEDS数据集和Copernicus DEM数据集,重点对后者进行影像集合的筛选、波段选择、镶嵌和投影设置。通过对Copernicus DEM数据进行坡度、坡向和山体阴影计算,并将高程划分为多个类别,实现地形特征的分类可视化。同时,提取了水体掩膜并去除陆地部分,增强了水域显示效果。最后,脚本将多种图层(如阴影、高程分类、水体、坡度、坡向等)添加到地图中进行叠加展示。; 适合人群:具备地理信息系统(GIS)基础、遥感数据处理经验及Google Earth Engine平台使用经验的技术人员或科研人员;熟悉JavaScript语法者更佳; 使用场景及目标:①学习如何在GEE中处理和可视化多源DEM数据;②掌握地形分析基本操作(如坡度、坡向、山体阴影、影像分类)的实现方法;③实现区域地形特征的多维度可视化表达; 阅读建议:此资源以代码实践为主,建议结合GEE平台实际运行并逐步调试每一步输出结果,深入理解影像处理流程与地形分析逻辑。

2025-09-09

【遥感影像分类】基于CART算法的Sentinel-2影像土地覆盖分类:水体、农村、森林与城市区域识别模型构建与精度评估

内容概要:本文主要介绍了一种基于Google Earth Engine平台的遥感影像分类方法,利用Sentinel-2卫星影像和CART(分类与回归树)分类器对地表覆盖类型进行监督分类。文中定义了四类地物:水体(agua)、农村地区(rural)、森林(bosque)和城市区域(urbano),并通过手工标注的训练样本构建训练集与验证集。随后,使用不同参数配置的CART分类器(默认参数、最小叶节点样本数限制、最大节点数限制)对影像进行分类,并通过混淆矩阵评估分类精度,包括总体精度、生产者精度、用户精度、F1分数和Kappa系数等指标。; 适合人群:具备遥感图像处理基础知识,熟悉Google Earth Engine平台操作,有一定编程经验的研究人员或地理信息系统(GIS)相关专业学生。; 使用场景及目标:①实现遥感影像的地物分类;②比较不同参数设置下CART分类器的性能差异;③评估分类结果的精度并优化模型参数;④为土地利用/覆盖变化监测提供技术支持。; 阅读建议:此资源以实际代码实现遥感分类流程,建议读者结合Google Earth Engine平台动手实践,理解样本划分、分类器训练、精度验证等关键步骤,并尝试调整分类器参数以观察对结果的影响。

2025-09-09

【遥感影像分类】基于Sentinel-2与NDVI的决策树模型:城市、水体、森林和农村土地覆盖分类系统设计

内容概要:本文基于Google Earth Engine平台,利用Sentinel-2遥感影像对墨西哥某区域进行土地利用分类研究。通过计算

2025-09-09

【遥感图像处理】基于Sentinel-2多光谱数据的NDVI分类模型:土地覆盖类型识别与精度评估系统设计

内容概要:该文档为一段用于地理空间分析的JavaScript代码,主要在Google Earth Engine平台上实现土地覆盖分类。通过导入Sentinel-2遥感影像数据,计算归一化植被指数(NDVI),并基于阈值对地表特征进行分类:利用NDVI < -0.1识别水体,NDVI > 0.55识别森林区域,结合蓝、绿、红、近红外波段反射率判断城市区域。随后使用预先定义的样本点(包括水体、农村、森林和城市)进行分类结果验证,生成误差矩阵并评估分类精度,包括总体精度、生产者精度、用户精度及Kappa系数。; 适合人群:地理信息系统(GIS)开发者、遥感数据分析人员、环境科学研究人员以及具备基础编程能力的地理空间技术学习者。; 使用场景及目标:①实现基于遥感影像的自动化土地覆盖分类;②评估分类模型的准确性,支持环境监测、城市规划与自然资源管理等应用;③学习NDVI在地物识别中的实际应用及误差评估方法。; 阅读建议:此资源以实际代码形式展示遥感分类全流程,建议结合Google Earth Engine平台实践操作,理解每一步的数据处理逻辑,并可替换区域或调整阈值以适应不同地理环境。

2025-09-09

【遥感影像分析】基于Sentinel-2的NDVI指数与决策树分类:土地覆盖类型提取与可视化方法研究

内容概要:本文通过使用Google Earth Engine平台,基于Sentinel-2遥感影像数据,对特定区域(以坐标点(-105.35, 20.60)为中心)在2020年3月至5月期间的地表覆盖类型进行分类分析。首先加载影像并进行假彩色可视化,随后计算归一化植被指数(NDVI),并利用NDVI值阈值分别识别水体(NDVI < -0.1)和森林(NDVI > 0.55)。同时,通过多波段反射率阈值(蓝、绿、红、近红外波段)检测城市区域。最终,将水体、非森林、森林和城市区域整合至一个分类图层,实现土地覆盖分类,包括水体、非城市/非森林区、森林和城市四类。; 适合人群:具备遥感基础知识和Earth Engine基础操作经验的科研人员或地理信息相关专业学生;; 使用场景及目标:①学习如何在Earth Engine中实现遥感影像的土地覆盖分类;②掌握NDVI计算与阈值分类方法;③理解基于决策树逻辑的多条件地物识别流程; 阅读建议:建议结合代码实际运行并调整阈值参数,观察分类结果变化,深入理解遥感指数与地物特征之间的关系,并可扩展至多时相分析以监测土地利用变化。

2025-09-09

遥感监测基于Sentinel-2与Landsat-8影像的NBR指数计算:森林火灾前后植被变化分析系统设计

内容概要:本文介绍了如何利用Google Earth Engine(GEE)平台对Landsat 8和Sentinel-2卫星影像进行处理与分析,研究特定区域(以点坐标[-103.76, 19.75]为中心)在2019年4月至6月期间的地表变化。通过对影像集合进行时间范围筛选、云覆盖过滤,并分别加载Landsat和Sentinel影像,实现了多源遥感数据的可视化。重点在于使用Sentinel-2影像计算归一化燃烧指数(NBR),并进一步分析火灾前后地表植被受损情况,通过计算差值NBR(dNBR)评估不同时间点的地表变化程度。; 适合人群:具备遥感基础知识和GEE平台使用经验的科研人员或地理信息相关专业学生;熟悉JavaScript语法者更佳;适合从事生态环境监测、灾害评估等领域的技术人员; 使用场景及目标:①学习如何在GEE中筛选、处理多源遥感影像;②掌握NBR和dNBR的计算方法及其在火灾影响评估中的应用;③实现遥感影像的可视化与对比分析,支持环境变化监测任务; 阅读建议:建议结合GEE代码编辑器实际运行代码,逐步调试并理解每一步的数据处理逻辑,重点关注影像筛选条件、波段选择及指数计算过程,可替换时间或区域参数进行扩展实验。

2025-09-09

【遥感影像分析】基于VIIRS的夜间灯光数据处理:2014至2023年区域光污染变化监测系统实现

内容概要:本文介绍了利用Google Earth Engine平台对2014年、2017年和2023年5月的夜间灯光数据进行处理与分析的技术流程。通过调用NOAA提供的VIIRS DNB月度数据集,提取“avg_rad”波段(平均辐射值),对不同年份的夜间灯光强度进行可视化展示,并叠加在同一地图中以便对比。文中还构建了一个用于裁剪的矩形区域,将三年数据合并为多波段图像,导出至Google Drive,便于后续区域分析。整个流程涵盖了影像筛选、重命名、叠加、地图可视化及数据导出等操作。; 适合人群:具备遥感基础知识和Google Earth Engine基础操作经验的科研人员或地理信息相关专业学生;熟悉JavaScript语法的开发人员。; 使用场景及目标:①用于城市化进程中的夜间灯光变化监测;②支持区域光污染分析、能源使用评估或灾害前后人类活动变化研究;③为环境、城市规划、社会经济研究提供数据支持。; 阅读建议:此资源以代码形式呈现,建议结合Earth Engine平台实际运行,理解每一步的数据处理逻辑,重点关注影像集合的筛选、图像导出参数设置及投影信息的获取方法。

2025-09-09

【地理信息科学】基于Google Earth Engine的分层抽样网格生成系统:城市功能区遥感监测空间采样设计

内容概要:该文档为一段用于地理空间分析的Google Earth Engine(GEE)脚本,主要实现研究区域内随机采样点的生成、区域划分及子区域网格化处理。脚本首先定义研究区域范围和投影系统,并在此基础上生成指定数量的随机采样点,每个点代表一个采样区域中心。随后,以这些点为中心构建矩形参考区域,并进一步将其划分为多个子区域(网格),便于精细化管理和可视化。为避免边界问题,实际采样区域进行了内缩处理,并支持通过切片参数控制输出的区域范围。最终结果以KML格式导出至Google Drive,便于外部使用。同时,脚本集成了Sentinel-2卫星影像和建筑物检测图层作为参考数据,辅助可视化与分析。; 适合人群:具备地理信息系统(GIS)基础、熟悉JavaScript或GEE平台的科研人员或技术人员,适用于遥感、城市规划、环境监测等领域从业者; 使用场景及目标:①用于大范围地理采样设计,支持分块管理与处理;②构建标准化网格系统,便于后续遥感分析、实地调查或模型输入;③结合高分辨率影像与建筑物数据进行空间分析; 阅读建议:使用前需理解各参数含义(如范围、密度、切片等),建议在GEE平台上逐步调试运行,结合地图可视化验证输出结果,并根据实际需求调整区域范围与网格密度。

2025-09-09

【地理信息系统】基于Google Earth Engine的栅格分区算法设计:多边形网格生成与空间分析应用

内容概要:该文档为一段基于Google Earth Engine(GEE)平台的JavaScript代码,主要实现了一个地理空间区域的网格化划分。代码以指定的中心点坐标为基础,定义了一个主矩形区域,并将其划分为多个等大小的子区域(网格)。通过几何变换、坐标计算和循环组合,生成了由多个小矩形组成的网格集合,并将其可视化展示在地图上。同时,代码还加载了Sentinel-2卫星影像数据和建筑物检测图层,用于叠加显示与空间分析。整个过程涉及地理投影转换、几何对象构建、列表迭代与映射、特征集合创建及地图可视化等操作。; 适合人群:具备地理信息系统(GIS)基础、熟悉遥感数据处理或正在学习Google Earth Engine平台的科研人员或开发人员;有一定编程经验,尤其是JavaScript基础的用户。; 使用场景及目标:①实现特定区域的规则网格划分,用于遥感影像分块处理、空间采样或区域统计;②学习GEE中几何对象、投影变换、列表操作与地图可视化的综合应用;③为后续空间分析、模型输入或变化检测提供结构化区域划分方案。; 阅读建议:此资源以代码形式呈现,建议结合GEE开发环境逐步调试运行,理解每一步的坐标变换逻辑与数据结构变化,重点关注combinations生成、zone_centers计算及FeatureCollection构建过程,便于掌握批量地理对象生成的方法。

2025-09-09

【遥感图像处理】基于Google Earth Engine的GeoTIFF城市建成区多分类模型:阈值分割与形态学分析在城市扩张监测中的应用

内容概要:本文主要描述了在Google Earth Engine(GEE)平台上对名为“Gdl_2015_prediction_float_tif”的GeoTIFF遥感影像数据进行城市建成区分类与多级重分类的技术流程。首先加载浮点型预测图像并可视化;随后通过设定0.5的阈值将其转换为二值图像,区分建成区与非建成区;接着利用焦点统计方法(focalMean)计算二值图像在584米半径圆形窗口内的均值,用于反映局部区域的建成密度;然后依据Angel等(2015)提出的分类规则,结合原始二值图与焦点统计结果,将建成区进一步划分为三个等级(低密度边缘区、郊区、核心区);最后通过形态学扩展(focalMax)识别邻近开放边缘的区域,并将其归为第五类——“开放边缘区”,最终生成包含五类建成区结构的分类图。; 适合人群:具备遥感图像处理基础、熟悉GEE平台操作的地理信息科学、城市规划及相关领域研究人员或技术人员。; 使用场景及目标:①实现遥感影像的城市建成区精细化分类;②理解并应用基于像元与局部统计的多级城市结构划分方法;③掌握GEE中图像阈值处理、焦点分析与条件重分类等核心操作。; 阅读建议:建议结合代码逐行调试,观察各阶段图像变化,深入理解分类逻辑与参数设置对结果的影响,并可迁移应用于其他城市区域的建成区结构分析。

2025-09-09

【地理信息系统】基于Google Earth Engine的采样区域分割与子区域生成:遥感影像分析中的空间采样设计

内容概要:该文档为一段用于地理空间分析的Google Earth Engine(GEE)脚本,主要功能是在指定研究区域内生成均匀且避免重叠的采样点,并基于这些点构建规则的矩形参考区域及子区域网格。脚本首先定义研究区域边界和中心高密度采样圆区,结合优先在高密度区布点的随机采样策略生成初始点集,通过空间过滤去除邻近点以保证分布均匀性,最终按需切片生成指定范围的采样单元。每个采样单元划分为若干子区域,所有结果以KML格式导出至Google Drive,便于后续实地调查或遥感分析使用。同时,脚本集成了多时相遥感影像(如Sentinel-2、Landsat)和建筑物矢量图层用于可视化参考。; 适合人群:具备地理信息系统(GIS)基础、熟悉GEE平台及JavaScript语法的科研人员或技术人员,尤其是从事生态监测、土地利用、遥感采样设计等相关领域的工作者。; 使用场景及目标:①实现大范围标准化采样网格的设计与自动化生成;②支持分批次处理大规模区域(通过切片参数控制);③结合高分辨率影像与辅助数据进行采样点可视化验证与分析。; 阅读建议:此资源以代码形式呈现,需在Google Earth Engine平台上运行调试,建议结合实际研究区域调整参数(如坐标范围、采样密度、切片范围等),并理解每一步的空间操作逻辑,以便灵活应用于不同场景。

2025-09-09

【地理信息系统】基于Google Earth Engine的遥感影像分析与空间采样设计:多时相遥感数据支持下的区域分块采样系统实现

内容概要:该文档为一段用于地理空间分析与采样区划的Google Earth Engine(GEE)脚本代码,主要功能是根据指定的研究区域边界和参数设置,自动生成具有空间分层随机采样特征的网格化采样单元(包括主区域、子区域及采样点)。脚本支持通过设定采样密度、缓冲区范围、投影坐标系等参数控制采样分布,并优先在指定圆形区域内集中采样点以提高局部密度。代码实现了从随机点生成、去重过滤、区域切割、矩形与子区域划分,到最终将结果导出为KML文件的完整流程,同时集成了多时相遥感影像(如Sentinel-2、Landsat系列)用于可视化参考,并可通过点击地图交互式查询子区属性信息。; 适合人群:具备地理信息系统(GIS)、遥感或生态学背景,熟悉JavaScript或GEE平台的科研人员或技术人员,尤其是从事野外采样设计、空间抽样或环境监测相关工作的用户;; 使用场景及目标:①用于生态调查、土地利用研究等需要系统性空间采样的项目规划;②实现自动化生成可导出的采样框架,提升采样效率与空间代表性;③结合高分辨率影像与建筑物数据进行采样区背景分析; 阅读建议:使用前需理解各参数含义(如采样密度、切片范围、缓冲半径等),并根据实际研究区域调整UTM边界与投影设置;建议分段运行代码以调试采样效果,注意避免单次导出过多子区域(如超过1000个)导致性能问题。

2025-09-09

【地理信息系统】基于Python的多源CSV数据整合工具:市政植被覆盖时空分析数据预处理系统设计

内容概要:该脚本通过Python的pandas和pathlib等库,实现了对多个年度的市级植被相关数据(如ICV、PCV、POP、PSI)的自动化整合。程序会依次读取指定年份范围内的CSV文件,移除几何列(如geom、geojson等),并对数值型数据保留两位小数进行精度统一,最终将所有数据合并为一个按城市代码和年份排序的统一表格,并保存至指定输出目录。同时提供命令行参数支持自定义处理年份、输出文件名和路径。; 适合人群:熟悉Python编程与数据处理的科研人员或数据工程师,具备基本pandas操作经验者更佳。; 使用场景及目标:①用于整合跨年度的区域级环境指标数据集,提升数据预处理效率;②适用于需要长期序列数据分析前的数据清洗与标准化任务;③支持批量处理缺失部分年份文件的情况并给出提示。; 阅读建议:建议使用者确保输入文件命名规范一致,并检查字段是否包含预期列(如cd_mun、ano)。可结合实际数据结构调整列名匹配逻辑,避免因字段缺失导致错误。

2025-09-11

【遥感与Web开发】基于Flask与Google Earth Engine的亚马逊雨林NDVI监测系统:实现植被指数可视化与时间序列分析

内容概要:本文展示了一个基于Flask和Google Earth Engine(GEE)构建的亚马逊雨林NDVI监测API系统。该系统利用Sentinel-2卫星遥感数据,实现了对亚马逊地区植被指数(NDVI)的地图可视化、像元值查询与12个月时间序列分析功能。代码中集成了地理范围定义、云遮罩处理、NDVI波段计算、数据聚合与统计分析等遥感处理流程,并通过RESTful接口对外提供服务,支持前端地图应用的数据调用。系统具备容错机制与演示模式,在GEE未初始化时可返回模拟数据。; 适合人群:具备Python编程基础、熟悉Web开发及地理信息系统(GIS)的科研人员或开发者,尤其是从事环境监测、遥感数据分析等相关领域的技术人员;; 使用场景及目标:①用于实时监测亚马逊雨林植被覆盖变化;②为生态保护、气候变化研究提供数据支持;③作为遥感Web应用开发的技术参考,学习如何将GEE与Flask结合构建空间数据服务API; 阅读建议:建议结合前端地图项目配套使用,重点关注NDVI计算、时间序列合成与API接口设计逻辑,部署时需配置GEE认证以获取真实数据。

2025-09-11

【遥感数据分析】基于多源遥感数据的干旱监测模型构建:气象时空特征提取与XGBoost分类应用

内容概要:本文主要介绍如何基于10年干旱数据集,通过Python进行数据处理、特征工程、异常检测与干旱标签生成,并构建机器学习模型(如随机森林和XGBoost)实现干旱预测。内容涵盖从原始CSV文件中解析地理信息(.geo字段),提取经纬度,转换时间格式,进行日均、周均聚合,计算滚动均值与时间序列异常值(anomaly和z-score),到最终构建监督学习模型的完整流程。同时强调了避免数据泄露(data leakage)的重要性,确保模型评估的可靠性。; 适合人群:具备一定Python编程和数据分析基础,熟悉pandas、sklearn等库的数据分析师、科研人员或研究生。; 使用场景及目标:①学习遥感与气象时间序列数据的处理方法;②掌握干旱等环境事件的特征构造与标签定义策略;③构建基于多源变量(NDVI、LST、降水、土壤湿度)的极端气候预测模型。; 阅读建议:此资源以实际项目流程为导向,建议读者结合代码逐步实践,重点关注时间序列处理、特征缩放、异常检测逻辑及模型训练中的数据泄露规避方法,并可将该框架迁移至其他区域或灾害类型分析中。

2025-09-10

环境遥感基于Google Earth Engine的PM2.5时空分析:利用xarray与geemap实现日月年尺度空气质量可视化系统

内容概要:本文介绍了如何利用Google Earth Engine(GEE)平台与Python库geemap、xarray等工具,对全球高分辨率空气污染(GHAP)数据集中的PM2.5浓度进行时空分析。通过定义研究区域(ROI),加载每日和每月的PM2.5遥感影像数据集,并借助xarray引擎读取Earth Engine数据,实现空间平均值的时间序列计算与可视化。文中展示了日均、月均及年均PM2.5浓度的变化趋势,包括时间序列图表和空间分布图,帮助用户理解空气质量的长期变化与季节性特征。; 适合人群:具备Python编程基础、地理信息系统(GIS)背景及环境遥感数据分析需求的科研人员或学生;熟悉Jupyter环境和基本数据可视化操作者更佳; 使用场景及目标:①开展区域空气质量监测与评估;②研究PM2.5浓度的季节性和年际变化规律;③学习如何结合GEE与xarray进行大规模遥感数据处理与分析; 阅读建议:此资源侧重于实际操作流程,建议读者在本地或云端Python环境中复现代码,配合Earth Engine账号进行数据调用与调试,同时可扩展至其他污染物或区域分析以加深理解。

2025-09-10

干旱监测脚本python代码

干旱监测脚本python代码

2025-09-10

【Python地理数据分析】基于pandas与geopandas的遥感影像处理:NDVI时序分析与滑坡预测系统实现

内容概要:本文介绍了在Python编程环境中使用各类常用库进行数据处理与分析的基础方法,涵盖pandas、numpy、matplotlib、geopandas、rasterio、rioxarray和lightgbm等库的功能与安装方式,并演示了如何在Google Colab中导入库、读取Google Drive中的数据文件、定义变量、创建数据表、绘制图表、处理栅格数据(如NDVI影像)和矢量地图数据(shapefile)的基本操作。通过具体代码示例,帮助用户快速搭建环境并实现数据读取、可视化与初步分析。; 适合人群:具备基础Python编程能力,正在学习地理空间数据分析或遥感数据处理的科研人员、学生及初中级开发者;尤其适合使用Google Colab进行环境配置的用户。; 使用场景及目标:①学习如何在Colab中挂载Google Drive并访问项目数据;②掌握常用科学计算与地理空间数据处理库的安装与导入;③实现表格数据的创建与统计分析;④完成栅格影像(如NDVI)的读取、波段选择与可视化;⑤加载并查看矢量地理数据(shapefile); 阅读建议:建议读者结合代码逐段运行,理解每一步的输出结果,并根据实际数据路径调整变量设置,强化动手实践能力,为后续深入学习机器学习与遥感分析打下基础。

2025-09-10

【遥感与时间序列分析】基于NDVI时序影像的断点检测模型:亚马逊湿地生态突变点识别系统设计

内容概要:该文档为一段用于检测潘塔纳尔湿地遥感影像时间序列中突变点(tipping points)的Python代码,主要基于NDVI时间序列数据进行分析。通过加载多年12个月度波段的GeoTIFF影像,利用rasterio读取地理空间数据,使用ruptures库检测每个像素时间序列中的首次显著变化点,并统计每个处理单元(tile)内发生突变的像素比例、最早与最晚突变时间及最频繁突变年月。代码包含数据预处理、去季节化、线性插值填补缺失值、分块处理大范围影像等功能,并输出CSV结果文件及关键区域的时间序列图表。; 适合人群:具备遥感数据处理基础、熟悉Python编程及地理空间数据(如GeoTIFF)操作的科研人员或数据分析师,尤其适合从事生态系统变化检测、土地覆盖动态研究的相关领域人员;; 使用场景及目标:①识别长时间序列遥感影像中生态系统的结构性变化(如退化或恢复);②实现大范围区域的分块高效处理与突变检测;③生成可视化图表支持变化趋势分析与成果展示; 阅读建议:此资源以实际代码形式呈现,建议结合Google Colab环境运行,确保输入数据符合命名规范与结构要求(每年12个波段),并根据硬件条件调整TILE_PX参数以优化内存使用。

2025-09-10

【遥感与地理信息】基于Landsat时序影像的NDVI年际变化分析:潘塔纳尔湿地植被动态监测系统实现

内容概要:本文是一份基于Google Earth Engine(EE)与Google Colab的完整遥感数据处理脚本,旨在通过Landsat系列卫星影像(L5、L7、L8、L9)计算1985至2024年间潘塔纳尔湿地的NDVI(归一化植被指数)时间序列。脚本包含环境配置、地理数据预处理(如Shapefile读取与几何校正)、多源影像融合、按月和年度聚合NDVI数据,并以300米分辨率导出GeoTIFF格式的年度12波段堆栈文件。同时集成质量控制流程,包括无效值处理、空间掩膜、统计验证与导出后数据核查,确保结果的准确性和可用性。; 适合人群:具备遥感与地理信息系统(GIS)基础,熟悉Python编程及Earth Engine平台的科研人员或技术人员,尤其适合从事长时间序列植被监测与生态环境变化研究的用户;; 使用场景及目标:①实现大范围、长时间序列NDVI数据的自动化处理与导出;②支持生态退化、气候响应或“临界点”分析等环境科学研究;③为区域尺度的遥感产品生产提供可复用的技术流程; 阅读建议:建议结合实际地理数据运行该脚本,注意调整路径、投影和区域参数;建议分步执行并监控任务状态,确保数据完整性,同时利用内置的QA机制验证输出结果的可靠性。

2025-09-10

遥感技术基于Google Earth Engine的卫星影像分析系统:身份验证与初始化测试脚本设计

内容概要:本文是一篇用于测试Google Earth Engine(GEE)认证和初始化的Python脚本,主要功能包括验证环境变量配置、检查默认凭证、初始化GEE服务并执行简单的影像数据操作测试。脚本通过加载.env文件获取项目ID,调用ee.Initialize()初始化Earth Engine,并请求Landsat卫星影像数据验证功能是否正常。程序还提供了详细的错误提示与排查建议,帮助用户快速定位认证问题。; 适合人群:具备Python编程基础,熟悉环境变量和API认证机制的开发人员或地理信息系统(GIS)技术人员,尤其是初涉Google Earth Engine平台的用户; 使用场景及目标:①验证GEE项目的认证配置是否正确;②调试本地或服务器端GEE应用的连接问题;③作为GEE应用开发前的预检查工具,确保后续遥感数据分析流程顺利进行; 阅读建议:此脚本不仅可用于实际认证测试,还适合作为学习GEE集成机制的参考代码,建议结合本地运行实践,理解认证流程及异常处理逻辑,并根据提示完善项目配置。

2025-09-09

3. Retrieve and Visualize Your Data - Update.pptx

3. Retrieve and Visualize Your Data - Update.pptx

2025-09-09

【地球科学教育】GLOBE教师指南工具包:全球环境观测项目教学资源与仪器规范

GLOBE仪器规格详细介绍

2025-09-09

【环境科学教育】基于GLOBE项目的全球环境观测系统:学生参与式科研数据采集与教学实践指南

内容概要:《GLOBE项目教师指南》是一份面向全球教育工作者和学生的环境科学教育项目指导文件,旨在通过学生主导的科学观测促进对地球环境的理解。GLOBE项目鼓励学生以“学生科学家”身份参与大气、水圈、土壤、生物圈和地球定位系统等领域的实地测量,按照标准化协议收集高质量环境数据,并通过互联网上传至全球数据库。这些数据不仅可用于科学研究,也支持学生进行数据分析、提出问题并开展自主探究。项目强调科学探究过程(inquiry-based learning),提供丰富的教学资源、仪器规范、背景知识和学习活动,帮助教师将环境观测融入课程,提升学生在科学与数学领域的综合能力。; 适合人群:小学至高中阶段的科学教师及学生,以及参与国际环境教育合作项目的教育工作者和科研人员。; 使用场景及目标:①支持学校开展跨学科环境科学教学;②培养学生科学探究能力与全球环境意识;

2025-09-09

Introduction to GLOBE.pptx

Introduction to GLOBE.pptx

2025-09-09

GLOBE Data User Guide-v2-final.pdf

GLOBE Data User Guide-v2-final.pdf

2025-09-09

Web开发基于Next.js的API路由设计:气候数据查询系统实现与BigQuery集成

内容概要:该文档展示了一个基于Next.js的后端API接口实现,用于从Google BigQuery获取森林损失数据。接口支持按国家查询历史森林损失数据及未来预测数据,通过SQL查询将历史数据表与预测数据表合并并按时间排序返回。代码实现了参数校验、错误处理、参数化查询防止注入,并返回包含元信息的结构化JSON响应。; 适合人群:具备Node.js、TypeScript和数据库查询基础的前后端开发人员,尤其是对Next.js API路由和BigQuery集成感兴趣的开发者。; 使用场景及目标:①学习如何在Next.js中构建安全、健壮的数据查询API;②了解如何通过参数化查询与BigQuery交互;③掌握结构化API响应设计,包括错误处理和元数据返回;④实现环境监测类数据(如森林损失)的可视化接口支撑。; 阅读建议:此资源适用于需要连接BigQuery并提供RESTful接口的项目场景,建议结合Next.js文档和BigQuery SDK文档一起学习,注意理解参数绑定、异步处理和类型安全的实践方式。

2025-09-09

Web开发基于Node.js的Next.js API路由实现:BigQuery数据库连接测试接口设计与异常处理

内容概要:该文档是一个使用Next.js框架编写的后端API路由文件,用于测试与Google BigQuery数据库的连接状态。代码通过导入NextResponse处理响应,并调用封装在 "@/lib/bq" 中的 testBigQueryConnection 函数进行数据库连接测试。若连接成功,返回包含成功状态、时间戳及测试数据的JSON响应;若失败或发生异常,则返回错误信息及对应的时间戳,并设置HTTP状态码为500。整体逻辑清晰,具备错误捕获与日志输出机制,确保服务端接口的健壮性与可调试性。; 适合人群:熟悉Next.js和Node.js开发,具备一定后端服务编写经验的开发者,尤其是对Google Cloud或BigQuery有使用需求的技术人员。; 使用场景及目标:①用于验证应用程序与BigQuery之间的网络连接与认证配置是否正确;②作为服务健康检查接口,集成到系统监控或部署流程中;③为后续数据查询、分析功能提供基础连接测试支持。; 阅读建议:此资源适合作为Next.js中API路由与外部云服务集成的参考示例,建议结合项目中的实际BigQuery配置进行调试,理解异步请求处理、错误边界控制及模块化函数调用的设计思路。

2025-09-09

数据分析基于BigQuery的森林损失关键指标计算:国家年度损毁面积与趋势预测API设计

内容概要:该文档展示了一个基于Node.js的Next.js API路由实现,用于从Google BigQuery获取森林损失相关的KPI数据。代码通过SQL查询计算指定国家最近一年的森林损失面积、近5年与前5年的平均损失对比、变化百分比以及未来15年的预测总损失面积,并将结果与元数据(如国家名称、时间戳、数据源)一并返回。查询使用了CTE(公共表表达式)进行结构化数据处理,并通过参数化防止SQL注入。; 适合人群:具备Node.js、TypeScript、SQL及BigQuery使用经验的后端开发人员或数据工程师;熟悉Next.js框架的全栈开发者;关注环境数据(如森林变化)的应用开发者。; 使用场景及目标:①构建气候或环境监测类应用的数据接口;②学习如何在Next.js中集成BigQuery实现动态数据查询;③理解复杂SQL在API服务中的实际应用,如时间序列分析与趋势对比;④实现可扩展的数据服务以支持前端可视化仪表盘。; 阅读建议:此资源结合了前后端与数据工程实践,建议读者结合Next.js文档与BigQuery语法深入理解代码结构与查询逻辑,同时注意错误处理与参数安全的实现方式。

2025-09-09

【地理信息系统】基于Node.js的Earth Engine连接测试接口:用于验证遥感平台API连通性与状态监控

内容概要:本文展示了一段用于测试与Google Earth Engine(GEE)连接状态的TypeScript代码,通过Next.js的API路由实现了一个GET请求处理函数。代码中调用了gee模块中的testEarthEngineConnection函数来检测GEE服务的连接情况,并根据结果返回相应的JSON响应,包含连接状态、时间戳和成功或错误信息。程序还对异常进行了捕获和处理,确保服务端接口的健壮性。; 适合人群:具备Node.js、TypeScript及Next.js开发经验的前端或全栈工程师,熟悉后端API编写并有地理空间数据平台集成需求的技术人员。; 使用场景及目标:①验证应用后端与Google Earth Engine服务的连通性;②构建遥感数据平台时实现服务健康检测接口;③学习如何在Next.js中封装外部服务连接测试逻辑。; 阅读建议:此资源侧重于服务连接验证的工程实践,建议读者结合Next.js运行时环境和Google Earth Engine SDK配置进行实际部署测试,并关注错误处理与日志输出的完整性。

2025-09-09

【地理信息系统】基于Google Earth Engine的森林覆盖变化分析:多国森林损失数据API接口设计与实现

内容概要:本文展示了一个基于Next.js的后端API接口实现,用于获取指定国家在特定年份范围内的森林覆盖变化数据。该接口通过Google Earth Engine(GEE)平台获取森林损失和覆盖数据,支持参数化查询,包括国家名称、起止年份以及是否包含森林覆盖数据。代码中包含了完整的错误处理机制,对参数校验、连接测试、数据获取及异常捕获进行了详细处理,并返回结构化的JSON响应。同时支持CORS,允许跨域请求,适用于Web前端调用。; 适合人群:具备Node.js、TypeScript和Next.js开发经验的前后端工程师,熟悉API设计与地理信息系统(GIS)数据处理的技术人员;; 使用场景及目标:①构建环境监测类Web应用,如森林砍伐可视化平台;②学习如何在Next.js中集成第三方地理数据服务(如Google Earth Engine);③掌握健壮的API错误处理、参数验证与日志记录实践; 阅读建议:阅读时应结合GEE平台文档理解数据源背景,重点关注接口的异常处理逻辑与模块化设计思路,建议在本地部署时配置正确的服务账户密钥以测试完整功能。

2025-09-09

【地球引擎数据处理】基于Apache Beam的Xarray数据集重分块:Zarr格式遥感影像高效存储转换系统实现

【地球引擎数据处理】基于Apache Beam的Xarray数据集重分块:Zarr格式遥感影像高效存储转换系统实现

2025-09-09

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除