自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

此星光明博客

地理信息和卫星遥感云计算专业指导

  • 博客(5215)
  • 资源 (1934)
  • 收藏
  • 关注

原创 Google Earth Engine (GEE)——Cloud-Based Remote Sensing with Google Earth Engine(BOOK)

在没有任何报酬的情况下,他们分享了他们的知识,忍受了一轮又一轮的编辑建议,并处理了由不同经验水平的个人进行的多个章节审查。本书的出版还得益于SilvaCarbon的资助,SilvaCarbon是美国政府的一项机构间工作,旨在建立测量、监测和报告森林和其他土地中碳的能力。这本书是100多个个人一年多努力的成果,他们协同工作,提供了这个免费的资源,以学习如何使用这个令人兴奋的技术为公众服务。每一章的文字都经过了科学内容和说明的审查,至少有三次由独立工作的人进行审查,超过350次详细的章节审查。

2026-02-21 08:30:00 6

原创 MEaSUREs 格陵兰岛月度 MODIS 图像镶嵌图 V001

该数据集是 NASA 为研究环境制作地球系统数据记录 (MEaSUREs) 计划的一部分,由合成的 MODIS 图像构建而成的格陵兰海岸线和冰盖边缘的月度图像镶嵌图。!!!!!df。

2026-02-20 16:55:53 337

原创 Google Earth Engine(GEE)——非线性CART计算和RMSE计算

我们利用非线性的方式就是利用分类器进行分类,然后通过各类分类器来训练样本最后得出分类结果。地球引擎还允许用户进行非线性回归。非线性回归允许自变量和因变量之间存在非线性关系。与通过减速器实现的线性回归不同,这种非线性回归功能是由分类器库实现的。例如,分类和回归树(CART;见Breiman等人,2017)是一种机器学习算法,可以学习数据中的非线性模式。让我们重新使用上面的因变量和自变量(Landsat预测带)来训练回归模式下的CART。对于CART,我们需要将我们的输入数据作为一个特征集合。

2026-02-20 16:38:32 7

原创 Google Earth Engine(GEE)——主成分分析(PCA)多波段分析

例如,2x2的数组,轴的意思是 "日 "和 "色",可以有[['周一','周二'],['红','绿']]这样的标签,从而产生带状名称'monday_red','monday_green','tuesday_red',和'tuesday_green'。因此,根据你执行PCA的位置和你正在映射的频段,映射的PCA可能有很大的不同。使用图层管理器,将鼠标悬停在 "图层 "上,然后是 "PC",再点击 "PC "旁边的齿轮图标,可以在灰度中拉伸结果。CRS变换值的列表。如果没有指定,则使用图像的第一个波段的投影。

2026-02-20 08:00:00 12

原创 Google Earth Engine(GEE)——全球农田范围分布数据集1000m

在标称的 1 公里尺度上,V0.1 提供了来自四项主要研究的五类全球农田范围地图的空间分布:Thenkabail 等人。V1.0 是一个 5 级产品,提供有关全球农田范围和灌溉与雨养作物的信息。GFSAD 是 NASA 资助的一个项目,旨在提供高分辨率的全球农田数据及其用水情况,为 21 世纪的全球粮食安全做出贡献。GFSAD 产品是通过多传感器遥感数据(例如,Landsat、MODIS、AVHRR)、二次数据和田间地块数据得出的,旨在记录农田动态。农田:雨养,非常小的碎片。的其他信息是可用的。

2026-02-19 17:40:40 889

原创 MEaSUREs 格陵兰冰盖测绘项目(GrIMP)基于 GeoEye 和 WorldView 影像的数字高程模型 V002

该数据集包含格陵兰冰盖的增强分辨率数字高程模型 (DEM),该模型源自 Maxar Technologies 运营的 GeoEye-1、WorldView-1、-2 和 -3 卫星收集的亚米分辨率全色立体图像。该数字高程模型(DEM)由轨道内图像对(即在同一轨道上间隔数分钟采集的两幅图像)和跨轨道图像对(即来自不同轨道的图像)生成,并符合轨道内成像几何和最大时间间隔标准。

2026-02-19 17:36:29 259

原创 Google Earth Engine(GEE)——S2中3类影像加载去云和投影变化

更多的细节,请看关于云层掩码如何计算的完整解释。这个例子演示了如何使用COPERNICUS/S2_CLOUD_PROBABILITY数据集的使用ee.Algorithms.Sentinel2.CDI()方法,用于计算云层位移指数和方向性距离变换()用于计算云的阴影。警告:欧空局并没有为所有的L1资产制作L2数据,而且早期的L2覆盖范围也不是全球的。使用指定的或自定义的内核,对图像的每个波段应用一个形态学的reducer()过滤器。圆"、"方"、"十字"、"加"、"八角 "和 "钻石"。

2026-02-19 17:14:59 146

原创 PALS/原位多活动 800 米 UTM 网格亮度温度、后向散射和土壤湿度匹配 V001

该数据集包含由被动主动式 L 波段和 S 波段(PALS)微波飞机仪器获取的数据,并与各种土壤湿度观测活动的数据相匹配。这些数据是在四个不同的观测活动中收集的:1999 年南部大平原观测活动(SGP99)、2007 年云和地表相互作用观测活动(CLASIC07)、2002 年土壤湿度实验(SMEX02)和 2008 年 SMAP 验证实验(SMAPVEX08)。!!!!!df。

2026-02-19 00:56:26 235

原创 Google Earth Engine(GEE)——如何在一个空的map上创建一个geometry画图工具

之前遇到了一个问题:这个问题并不是一个系统的问题,也没有再console控制台上进行报错提示,但是却得不到想要的结果。本来是想重新建立一个APP用来展示新的地图,并且通过可视化矢量(点、线、面)的手动操作来给影像的后续运算进行计算,但是结果,把新的map重新加载进来却无法展示。

2026-02-16 07:30:00 124

原创 GEE 案例分析:基于Google Earth Engine的牧民迁移风险预警模型

本文介绍了一个基于Google Earth Engine平台的牧民迁移风险预警模型,该模型利用多源卫星遥感数据预测非洲草原牛群迁移趋势。模型通过整合水源可获得性、牧草质量、土地适宜性、坡度及人类影响五大评分因子,构建0-1概率空间的风险评估体系。创新性地采用季节性权重调整机制(旱季水源权重45%,雨季牧草权重40%),并排除水体和高密度城市区域。该云端解决方案融合了Sentinel、CHIRPS等六类数据源,实现了"数据不动代码动"的高效分析,为传统游牧生活提供科技守护,可帮助预防因资源

2026-02-15 09:00:00 20

原创 GEE AI:基于卫星嵌入式数据的森林高度精准测算

本文介绍了卫星数据在森林碳抵消项目开发中的关键应用,包括森林碳储量估算、基线情景构建和监测验证。气候科技公司Renoster通过整合Google DeepMind的AlphaEarth Foundations模型嵌入值,显著提升了森林结构测绘的效率和准确性。文章详细解析了三种主要森林碳项目类型(避免毁林、植树造林和森林管理改进)的技术实现路径,并提供了结合激光雷达与卫星嵌入数据的森林高度建模工作流程。这些技术突破为碳抵消项目的开发与验证提供了更高效、精确的解决方案,推动了碳减排领域的创新发展。

2026-02-15 09:00:00 527

原创 Google Earth Engine(GEE)——计算两个两幅图像之间每像素的光谱距离

我正在改编 Noel 的一个示例,以将 SNIC 和相关功能应用于(最终)分割农田边界。问题是在第 70 行发生了什么,spectralDistance 没有返回预期的结果。这两个图像各有一个波段,它基于 NDWI。这是将簇均值与原始图像进行比较的代码。两个输入图像似乎都有效。我的第一个猜测可能是 SAM 在每个图像中至少需要两个波段才能正常工作,但是spectralDistance 的文档让我得出结论,每个波段只需要一个波段就足够了。metric。

2026-02-15 07:15:00 22

原创 GEE 案例:基于sentinel-1 SAR数据的遥感智能监测船舶动态

本文介绍了一种基于Google Earth Engine和Sentinel-1 SAR数据的自动化船舶检测与密度制图方法。该方法通过创建交互式用户界面,允许用户自定义研究区域和时间范围,采用阈值法(-15dB)检测VV极化图像中的船舶目标,并进行连通组件分析。系统可计算船舶出现频率生成密度图,识别多次观测中均出现的徘徊区域,并提供数据可视化与导出功能(GeoTIFF格式)。相较于传统人工解译,该方法实现了大范围、长时间序列的船舶动态自动化监测,适用于港口管理、渔业监管等应用场景。

2026-02-14 09:00:00 12

原创 Google Earth Engine(GEE)——利用sentinel-2分使用概率波段进行变化检测

正如您在上一节中看到的,动态世界数据集提供了每像素类概率的时间序列。这允许人们轻松构建变化检测模型,而无需训练自定义模型或收集训练数据。在这个例子中,我们将看到如何使用概率带来探索城市随时间的变化。Dynamic World Built Area类的一个独特功能是它在定义中包含了建筑环境以及相邻的土地覆盖类型。当以前的非城市地区开始通过新的道路和城市结构进行城市化时 - 整个地区被归类为已建成。此功能对于检测城市蔓延非常有用。看到动态世界的基于概率的模型如何让我们通过一些简单的规则来探索城市扩张。我们首先选

2026-02-14 07:15:00 22

原创 Google Earth Engine ——高山林线交错带的空间探测(以美国西部为例)

计算 image1 和 image2 中每对匹配的波段的第一个值除以第二个值的余数。如果 image1 或 image2 中的任何一个只有 1 个波段,则它将用于其他图像中的所有波段。输出波段以两个输入中较长的一个命名,或者如果它们的长度相等,则按 image1 的顺序命名。输出像素的类型是输入类型的并集。设置较大的 tileScale(例如 2 或 4)使用较小的切片,并且可能会启用默认情况下内存不足的计算。如果未指定,则使用图像的第一个波段的投影。要工作的投影的标称比例(以米为单位)。

2026-02-13 07:45:00 31

原创 GEE错误:当运行代码过程中所有年份和情景下降水量为什么都为零?

摘要 用户在使用Google Earth Engine处理CMIP6降水数据时遇到所有年份和情景下降水量为零的问题。代码中: 选择了7个GCM模型和两个情景(ssp245, ssp585) 将日降水量从kg/m2/s转换为mm/day 计算年降水量总和并绘制图表 检查了各模型在各情景下的数据可用性 可能原因包括: 数据源('NASA/GDDP-CMIP6')中无有效降水数据 空间范围(geometry)与数据不匹配 时间范围(2015-2060)超出数据集覆盖 数据单位转换(86400倍乘)可能不正确 建议

2026-02-12 09:00:00 304

原创 Google Earth Engine APP(GEE)——设定一个4分屏影像的地图(哨兵2数据为例)

设定一个4分屏影像的地图,分别设定不同的波段进行查看影像进行地图查看。本文用到的函数:setControlVisibility(all, layerList, zoomControl, scaleControl, mapTypeControl, fullscreenControl, drawingToolsControl)设置地图上的控件的可见性。返回这个ui.Map。参数。this:ui.map(ui.Map)。ui.Map实例。all(布尔值,可选)。是否显示所有控件。False隐藏所有控件;t

2026-02-12 08:00:00 20

原创 Google Earth Engine APP——ui.button和onClick的简单教学分析

我们就简单的分析一下关于button和onClick的一些简单的问题。这里重点就是一个function的写,也就是我们常说的返回值callback,写好function时建立一个好的APP的基础。所以我们可以通过设定一个函数来通过onclick这个命令来实现单次返回的结果。...

2026-02-11 08:30:00 14

原创 Google Earth Engine(GEE)——人口数据影像重采样分析

还原器的输出名称决定了输出波段的名称:有多个输入的还原器将直接使用输出名称,有单个输入和单个输出的还原器将保留输入波段的名称,有单个输入和多个输出的还原器将在输出名称前加上输入波段的名称(例如'10_mean', '10_stdDev', '20_mean', '20_stdDev' 等等)。如果在默认分辨率下使用输入的图像需要太多的像素,那么就从一个允许操作成功的金字塔级别的已经被还原的输入像素开始。还原器的输入权重将是输入掩码与输入像素所覆盖的输出像素部分的乘积。为每个输出像素合并的最大输入像素数。

2026-02-11 01:59:33 607

原创 MEaSUREs 基于 InSAR 的南极冰层速度图 V002

该数据集是美国国家航空航天局(NASA)“地球系统数据记录研究应用计划”(MEaSUREs)的一部分,首次提供了由多个卫星干涉合成孔径雷达系统拼接而成的南极冰层运动的高分辨率数字镶嵌图。数据主要采集于 2007 年至 2009 年国际极地年以及 2013 年至 2016 年。此外,还根据需要使用了 1996 年至 2016 年间采集的补充数据,以最大限度地扩大覆盖范围。!!!!!df。

2026-02-11 01:57:15 332

原创 从大型 GeoTIFF 卫星影像中根据地理坐标提取图像切片(Patches)

摘要: 本文介绍了一种从大型GeoTIFF卫星影像中提取图像切片的方法,用于构建CNN训练数据集。针对卫星影像数据量大(GB级)而CNN输入小(如9×9像素)的特点,提出采用rasterio库的Windowed Reading技术实现内存高效处理。核心步骤包括:1)通过仿射变换将地理坐标映射为像素坐标;2)提取指定窗口的图像切片并进行维度转换;3)以压缩格式存储数据。该方法支持在普通计算机上处理TB级影像,并通过可视化验证了不同地物类别切片的提取效果。文中提供了完整的Python实现代码,包含坐标转换、数据

2026-02-10 09:00:00 275

原创 Google Earth Engine——ui.label的展示进行分析

返回一个返回其输入的第一个的Reducer。用一个标签来展示高程,这里我们会使用。

2026-02-10 08:00:00 21

原创 MEaSUREs 格陵兰冰盖速度:来自 InSAR V004 的选定冰川站点速度图

!!!!df。

2026-02-09 18:56:22 465

原创 Google Earth Engine(GEE)—— 获取影像的最小值sentinel-2影像

这个想法是获取每个像素的图像年份,其中 NDVI 具有最小值。也许您可以从元数据中提取图像的日期并尝试将其用作变量来生成每个像素栅格的年份?我有一个简单的代码,我在其中提取了 5 个不同年份夏季的平均 NDVI 值。返回此日期相对于较大单位的指定(基于 0 的)单位,例如getRelative('day', 'year') 返回 0 到 365 之间的值。“月”、“周”、“日”、“小时”、“分钟”或“秒”之一。“年”、“月”、“周”、“日”、“小时”或“分钟”之一。生成一个到处都包含常量值的图像。

2026-02-09 18:41:23 19

原创 近实时 DMSP SSM/I-SSMIS 每日极地网格化亮度温度 V002

近实时 DMSP SSM/I-SSMIS 每日极地网格化亮度温度产品提供南北半球的近实时极地立体网格化每日亮度温度。!!!!!df。

2026-02-09 18:32:46 256

原创 基于Gamma Earth S2DR4模型实现Sentinel-2影像分辨率从10米超分到1米的全记录附代码

用户需要提供感兴趣区域的经纬度坐标。S2DR4 模块会自动对接 Sentinel-2 的数据接口。这是 S2DR4 的灵魂部分,负责加载模型并将低分辨率的 Sentinel-2 图像转换为 1 米分辨率。"""执行 S2DR4 超分辨率推理:param input_path: 原始 10 波段 Sentinel-2 图像路径:param model_weight_path: 预训练模型权重路径:param output_folder: 结果保存文件夹"""

2026-02-09 09:00:00 849

原创 Google Earth Engine APP(GEE)——设定一个可查看逐点人口、高程和坡度等APP

在输入掩码为0的所有位置,用另一幅图像的掩码和值替换输入图像的掩码和值。输出的图像保留了输入图像的元数据。默认情况下,输出图像也保留了输入图像的足迹,但将sameFootprint设置为false可以扩展足迹。如果这是一个单一的波段,它将用于输入图像的所有波段。对于 "输入"的每个波段的每个像素,如果 "测试 "中的相应像素为非零,则输出值中的相应像素,否则输出输入像素。如果是假的,输出的脚印是输入脚印和值图像的脚印的结合。在测试不为零时使用的输出值。如果这是一个单一的波段,它将用于输入图像中的所有波段。

2026-02-09 08:30:00 236

原创 全球地表水动态变迁数据集 (1984-2022)

摘要: 全球地表水动态变迁数据集(1984-2022)首次以年度分辨率追踪了地表水的扩张与消退时间。基于Landsat影像和Google Earth Engine算法,该数据集滤除短期波动,识别持久性变化,涵盖河流、湖泊、海岸带等多种水体。相比传统净变化分析,该数据通过时间点标记(30米分辨率)清晰区分自然过程(如河流演变)与人为干预(如建坝、农业扩张),精度达MAPE 14.9%、R² 0.80。数据包含两个波段:水体扩张年份(b1)和消退年份(b2),支持开放获取(CC BY 4.0),可用于水文、气候

2026-02-08 09:00:00 1074

原创 Google Earth Engine APP(GEE)——将土地分类数据的MODIS的图例添加到Map上

我们要先看一下土地分类数据集:MCD12Q1.006 MODIS Land Cover Type Yearly Global 500mMCD12Q1.006 MODIS土地覆盖类型年度全球500米MCD12Q1 V6产品提供了由六种不同的分类方案得出的每年(2001-2016)的全球土地覆盖类型。它是通过对MODIS Terra和Aqua反射率数据进行监督分类得出的。监督下的分类然后经过额外的后处理,结合先前的知识和辅助信息,进一步完善特定的类别。时间序列2001-01-01T00:00:00 -Datas

2026-02-08 07:45:00 40

原创 2015-2030 年全球网格化人口(WorldPop )数据集

WorldPop全球高分辨率人口数据集(2015-2030年)采用机器学习方法生成100米网格化人口分布数据,整合最新人口普查和卫星影像,提供年度人口估算。该数据集包含总人口及按性别年龄细分的数据,采用约束模型(限定居住区)和非约束模型两种方法。数据覆盖全球242个国家,与联合国人口预测保持一致,适用于精细尺度的人口分析研究。用户可通过Earth Engine平台访问该数据集,并支持多种可视化分析功能。

2026-02-07 15:12:25 686

原创 Google Earth Engine ——利用modis影像来获取温度和植被指数

返回一个过滤器,如果对象的时间戳落在日历字段的给定范围内,则通过。月、年中的日、月中的日和周中的日是以1为基础的。时间被假设为UTC。周被假定为从星期一开始,即第1天。如果end=start或值...

2026-02-07 07:45:00 30

原创 Google Earth Engine ——超限解决方案(自己上传的RF分类样本点timeout)

再解决这个问题是,主要的问题是就是计算超限,刚开始想的提示波段超限,我们首先减少了波段的获取,从而解决了倒数第二个问题,然后我们进行随机岩本点数量统计的结果可以看出,因为这里没有限制输出的多少,当你以10米分辨率去进行统计个数的时候,像素值是超限的我们将scale的值进行放大即可。本次我们的案例中再次出现了所谓的超限超时的问题,最关键的就是我们一种解决方案就是把我们不用的波段尽可能的去掉,这样减少总的像素值,另外一个就是设定scale放大,这样可以有效的减少运算量.以米为单位的投影取样的名义比例。...

2026-02-07 07:30:00 29

原创 Google Earth Engine APP(GEE)—一个Landsat 8 影像筛选和下载器交互式APP

本篇的主要目的是通过Landsat8 影像的筛选,时间,单景影像以及影像的真彩色、加彩色等影像展示和导出影像数据的一个交互式app. 代码:

2026-02-06 18:23:23 126

原创 Google Earth Engine——ui.Map的设定和加载

本次我们紧接着继续介绍ui.Map的介绍,这次是通过button上面加载一个标签属性,然后机载一个新的ui.Map()进行分析,然后分别加载一个button和新的map上。第二步,我们就清理面板,然后加载一个button,用函数进行加载获取地图中心点的位置,并通过颜色进行改色和图层名称的加载。返回ui.data.ActiveList。ui.Map.AbstractLayer实例。ui.data.ActiveList实例。ui.Label实例。...

2026-02-06 18:13:12 25

原创 近实时 DMSP SSM/I-SSMIS 每日极地网格化亮度温度 V002

近实时 DMSP SSM/I-SSMIS 每日极地网格化亮度温度产品提供南北半球的近实时极地立体网格化每日亮度温度。!!!!!df。

2026-02-06 18:11:35 312

原创 利用 Nimbus-7 SMMR 和 DMSP SSM/I-SSMIS V004 数据进行海冰浓度自举法计算

本海冰浓度数据集基于 Nimbus-7 卫星上的扫描多通道微波辐射计(SMMR)以及国防气象卫星计划(DMSP)-F8、-F11 和-F13 卫星上的特种传感器微波成像仪(SSM/I)的测量数据生成。此外,还包含了 DMSP-F17 卫星上的特种传感器微波成像仪/探测仪(SSMIS)的测量数据。该数据集采用高级微波扫描辐射计-地球观测系统(AMSR-E)的自举算法生成,并采用每日变化的连接点。南北极地区均提供每日(1987 年 7 月之前为隔日)和每月数据。

2026-02-04 20:16:44 272

原创 来自 Nimbus-7 SMMR 和 DMSP SSM/I-SSMIS 被动微波数据的海冰浓度 V002

该数据集由亮温数据生成,旨在提供涵盖多个被动微波仪器观测范围的连续海冰浓度时间序列。数据采用极地立体投影,网格单元大小为 25 x 25 公里。数据采集始于 1978 年 10 月 26 日,并持续更新至最新数据,每年更新数次。!!!!!df。

2026-02-04 20:07:00 372

原创 Open Earth Engine Library (OEEL)——Savitzky-Golay滤波拟合法进行逐月的NDVI波段拟合

注意本文的主要目的是是通过筛选逐月通过函数filter(ee.Filter.calendarRange(1, 12,'month')),然后设定进行去云和NDVI等计算之后,然后再通过绘制时间序列图实现拟合前后的对比。期间遇到不小的麻烦: 昨天还好好的,今天起来发现这个库用不了了:Cannot find required script: users/OEEL/lib:loadAll 然后立马给反馈,等待回复,感觉GEE更新了: 再次介绍一下函数:SavatskyGolayTimeFilter. Pa

2026-02-04 07:00:00 18

原创 Google Earth Engine——ui.inspector获取点的监测

对于特征和特征集合,唯一支持的键是"color",是一个CSS3.0颜色字符串或"RRGGBB"格式的十六进制字符串。如果传入一个字符串,它将被当作该名称的布局构造函数的快捷方式。一个允许的CSS样式的对象,其值要为这个小组件设置。面板可以被添加到ui.root中,但不能用print()打印到控制台。一个可以容纳其他小组件的小组件。要添加到面板上的部件的列表或单个部件。该图层的不透明度,用0到1之间的数字表示,默认为1。将给定的EE对象作为一个图层添加到地图上。中心的经度,单位是度。...

2026-02-03 07:00:00 29

原创 GEE案例分析:基于卫星遥感的高温道路(地表温度LST)电池风险评估系统

摘要: 本文提出基于Google Earth Engine(GEE)平台的智慧城市高温道路电池风险评估系统。通过集成Landsat 8/9卫星遥感数据与城市道路网数据,系统自动反演地表温度(LST),并建立电池风险分级模型(EV/普通汽车不同阈值)。核心算法包括:1)智能云掩膜与温度转换;2)道路网温度空间聚合;3)交互式风险可视化。该系统可为城市提供道路高温预警,支持导航路径优化和市政降温工程规划,为应对气候变化下的电池安全问题提供决策支持。(150字)

2026-02-02 08:00:00 599

【地理空间分析】基于H3网格的洪水填充算法实现:城市区域步行可达性矩阵计算与路径优化

内容概要:本文介绍了一个基于H3地理编码系统的旅行时间计算框架,旨在通过floodfill算法或最短路径算法(如Dijkstra)计算指定研究区域内各H3区域之间的通行时间。代码利用SRAI库中的H3Regionalizer和H3Neighbourhood模块获取区域及其邻接关系,并计划结合本地路网数据进行实际通勤时间建模,支持步行、骑行和驾车等多种出行方式。目前核心功能为占位状态,返回随机生成的模拟数据,后续需集成真实路网与速度参数以实现精确计算。最终结果以Parquet格式存储,便于后续用于城市可达性分析与嵌入模型构建。; 适合人群:具备Python编程基础,熟悉地理空间数据分析(geopandas、pandas)、对城市计算、交通可达性研究感兴趣的科研人员或数据科学家,尤其适用于使用SRAI框架的研究者; 使用场景及目标:①评估城市内部不同区域间的短时可达性(如5分钟步行圈);②构建基于H3网格的本地化交通网络图谱,服务于智慧城市规划、设施布局优化等应用; 阅读建议:此资源当前为原型框架,关键函数尚未实现,学习时应重点关注其架构设计逻辑,并结合OSM等路网数据补充实现核心算法部分,同时注意路径创建与异常处理的最佳实践。

2026-02-10

【地理空间分析】基于H3网格的重力模型加权计算:城市可达性图谱构建与建筑密度数据集成方法

内容概要:本文提供了一个基于Python的程序框架,用于对城市可达性图谱应用引力模型加权计算。通过整合旅行时间数据与H3网格区域内的建筑密度数据,利用引力模型公式计算各区域间交互权重,从而优化可达性分析。代码中使用了pandas、geopandas等工具进行数据处理,并依托SRAI的H3网格系统实现空间划分。尽管核心逻辑结构完整,但关键部分如建筑密度加载和引力权重计算仍为占位实现,需后续补充真实数据来源与精细化处理。; 适合人群:具备Python编程基础、熟悉地理空间数据分析(如H3、GeoPandas)的城市规划、交通建模或地理信息系统(GIS)相关研究人员,以及有一定数据科学背景的硕士生、博士生或初级工程师; 使用场景及目标:①在城市可达性分析中引入引力模型,提升出行流动预测准确性;②构建支持多尺度空间分析的基础加权网络,服务于城市功能区识别、公共服务设施布局等研究;③作为SRAI框架下的模块化组件,集成到更大规模的城市嵌入(Urban Embedding)系统中; 阅读建议:此资源目前为原型代码框架,重点在于结构设计与接口定义,学习者应关注函数间的调用逻辑与参数传递方式,并结合实际数据集完成占位部分的实现,同时注意异常处理与数据质量控制。

2026-02-10

【地理信息科学】基于H3网格的多尺度图剪枝方法:城市可达性网络稀疏化处理工具设计

内容概要:本文介绍了一个用于剪枝(prune)加权图的Python程序,主要针对基于H3地理索引系统的多分辨率可达性网络进行稀疏化处理。通过设定不同H3分辨率下的百分位阈值,保留重力权重较高的边,从而生成更紧凑且具有代表性的子图。代码实现了按分辨率加载加权图、应用阈值剪枝、确保区域连通性以及生成多尺度图的功能,并支持命令行调用与日志记录。尽管核心剪枝逻辑已实现,但连通性保障等高级功能仍为占位状态,有待补充。; 适合人群:熟悉Python编程、地理空间数据处理及图算法的科研人员或城市数据分析师,具备pandas、geopandas、H3等工具使用经验者优先;; 使用场景及目标:①在大规模城市网络分析中降低计算复杂度,提取关键连接关系;②构建多尺度城市模型,支持区域可达性、功能区划分等研究;③作为地理AI建模前的数据预处理模块,提升模型效率与解释性; 阅读建议:此资源侧重于实际工程实现与参数配置,使用者应结合具体研究区域的数据路径和需求调整阈值与分辨率设置,并注意后续完善连通性校验逻辑以避免孤立节点问题。

2026-02-10

【计算机视觉】基于AlphaEarth与DINOv3融合网络的语义分割模型:荷兰地区多模态土地覆盖分类系统设计

内容概要:本文介绍了一个基于AlphaEarth卫星数据与DINOv3视觉特征融合的语义分割系统,用于荷兰地区的土地覆盖分类。系统采用条件化U-Net架构,引入跨注意力机制,利用全球卫星上下文(AlphaEarth)增强局部图像(航拍影像)的分割效果。项目定义了25类具有城乡属性的土地覆盖类别,输出基于H3六边形网格的多尺度分类结果,并集成至城市嵌入多模态分析流程中。通过对比实验表明,引入AlphaEarth条件化后模型准确率显著提升,尤其在住宅、商业和工业区域改善明显。 适合人群:具备深度学习与遥感图像处理基础,从事城市计算、地理信息系统或计算机视觉相关工作的研究人员与工程师。 使用场景及目标:① 实现高精度城市级土地利用分类;② 探索多源遥感数据(卫星+航拍)融合方法;③ 构建支持H3网格的空间智能分析系统;④ 提升复杂城市场景下的细粒度地物识别能力; 阅读建议:本文以代码形式呈现完整技术流程,建议结合模块化函数逐步实践,重点关注ConditioningConfig配置、跨模态注意力机制实现及与UrbanEmbeddingPipeline的集成方式,并可通过启用注释部分运行全流程验证效果。

2026-02-10

【地理信息处理】基于Google Earth Engine的边界提取与地图可视化

内容概要:本文介绍了如何利用Google Earth Engine(GEE)平台结合Python库geemap进行地理空间数据的处理与可视化。首先通过安装并升级xee和geemap库,完成Earth Engine的身份认证与初始化,随后创建交互式地图界面,获取用户绘制区域的几何点信息,并基于该点筛选出所在国家或地区的边界范围,实现边界的简化与图层叠加展示。文中还加载了自定义的伊朗吉兰省(Gilan)矢量数据集,并在独立的地图实例中进行可视化呈现,展示了区域提取与多图层管理的基本操作流程。; 适合人群:具备Python编程基础,对遥感、地理信息系统(GIS)或环境数据分析感兴趣的科研人员、学生及开发者;熟悉Jupyter Notebook环境的操作者更为适宜; 使用场景及目标:①用于地理空间数据的快速可视化与交互式分析;②支持区域边界提取、土地覆盖研究、环境监测等应用;③帮助用户掌握Earth Engine与geemap在实际项目中的集成方法; 阅读建议:此资源侧重于代码实操,建议读者在Colab或类似支持Python包管理的环境中运行代码,逐步执行每一步并观察地图响应,同时可替换为其他区域数据以加深理解。

2026-02-10

【地理信息科学】基于Google Earth Engine的ERA5气象数据处理:区域气温时空分析与可视化系统实现

内容概要:本文介绍了如何利用Google Earth Engine(GEE)平台与Python工具链(如xee、geemap、xarray)进行气候数据的获取、处理与可视化分析。重点操作包括对ECMWF/ERA5/DAILY气象数据集的时间序列筛选、区域裁剪、单位转换以及基于xarray的时间维度选择和空间数据分析,并最终实现气温数据的可视化展示。整个流程涵盖了从GEE初始化、交互式绘制研究区域、数据提取到本地计算的完整步骤。 适合人群:具备Python编程基础,熟悉地理空间数据处理或气候数据分析的科研人员及开发者,尤其适合环境科学、遥感、气象等领域的工作或研究人员(经验1-3年为佳)。 使用场景及目标:①实现ERA5等大规模气象数据在GEE中的高效调用与区域统计分析;②结合geemap实现交互式地理区域选取并驱动后端数据处理;③利用xarray进行多维气候数据的时间序列分析与温度单位转换(开尔文转摄氏度),并完成时空可视化。 阅读建议:此资源强调代码实践与地理空间分析逻辑的结合,建议读者在实际运行环境中逐步执行每一步操作,理解各模块间的数据传递机制,尤其是GEE与xarray之间的集成方式,同时可扩展应用于其他气象要素(如降水、风速)的类似分析流程。

2026-02-10

【计算机视觉】基于DINOv3的多源遥感影像嵌入生成:荷兰南荷兰省高分辨率城市环境表征系统设计

内容概要:本文介绍了一个基于Python的多模态地理空间嵌入处理流程,重点利用PDOK提供的荷兰高分辨率航空影像与AlphaEarth全球卫星图像,通过DINOv3远程 sensing 变体模型生成H3网格化的视觉嵌入。系统支持单源处理、多源融合(如航空影像与AlphaEarth联合)以及基于分层注意力机制和Fisher信息矩阵的主动推理编码,实现了从细粒度图像块到粗粒度H3单元的多层次特征聚合。代码结构清晰,涵盖日志记录、配置管理、模块化处理器调用及结果合并保存等功能。; 适合人群:具备地理信息系统(GIS)、计算机视觉或遥感背景,熟悉Python编程与机器学习框架的科研人员或数据工程师,尤其适合从事城市计算、环境监测等跨模态空间分析工作的从业者;; 使用场景及目标:①构建区域级高精度视觉嵌入用于城市表征学习;②融合多源遥感数据提升表征丰富性;③研究基于Fisher信息的分层主动推断机制在空间建模中的应用;④为下游任务如土地利用分类、城市形态分析提供特征基础; 阅读建议:此资源以实际代码示例驱动,建议结合项目目录结构运行各处理模块,重点关注AerialImageryProcessor与AlphaEarthProcessor的接口设计、DINOv3编码器的分层特征提取逻辑及其在UrbanEmbeddingPipeline中的集成方式,并通过日志输出理解执行流程。

2026-02-10

【地理空间机器学习】UrbanRepML与GEO-INFER跨平台数据桥接:H3网格化环境特征融合分析系统实现

内容概要:本文介绍了一个用于桥接UrbanRepML与GEO-INFER系统的数据转换与集成工具,重点实现了地理空间嵌入数据(如AlphaEarth级联数据)在不同系统间的格式转换与融合。程序首先加载Cascadia区域的H3网格化嵌入数据,将其从UrbanRepML格式转换为GEO-INFER兼容格式,并通过h3_data_bridge函数将数据适配到特定的GEO-INFER模块(如农业分析、气候影响)。此外,支持将UrbanRepML特征与GEO-INFER生成的特征进行拼接融合,形成联合表示。若主数据缺失,则回退使用南荷兰地区的预处理数据作为替代示例。整个流程展示了多源地理空间表征模型的数据协同机制。 适合人群:具备Python编程基础、熟悉地理信息系统(GIS)与机器学习数据处理的科研人员或工程师,尤其适用于从事城市计算、环境建模或遥感表征学习的研究者。 使用场景及目标:①实现UrbanRepML与GEO-INFER两大框架间的数据互通;②支持跨区域、多分辨率的空间嵌入整合与模型协同;③为下游任务(如土地利用分类、气候变化评估)提供统一的特征输入; 阅读建议:建议结合实际地理数据运行代码,重点关注urbanreml_to_geoinfer和combine_embeddings等核心函数的接口设计与数据结构变换过程,理解其在空间粒度对齐与特征融合中的作用。

2026-02-10

【气象数据分析】基于ERA5的高温热浪指数计算:地理空间Python工具在气候研究中的应用

内容概要:本文介绍了如何利用Google Earth Engine(GEE)平台与Python工具链(如geemap、xarray、xclim等)进行气候数据分析,重点实现了基于ERA5日值数据集的高温热浪指数计算与可视化。首先通过认证并初始化GEE环境,使用交互式地图选取研究区域(ROI),然后加载2010–2020年期间的最高气温数据,并将单位由开尔文转换为摄氏度。接着借助xclim库中的heat_wave_index函数,识别持续高温事件,设置温度阈值为25℃、滑动窗口为5天、年频率统计方式,完成热浪日数计算。最终通过等高线填色图展示多年空间分布特征,并提取特定地理位置的时间序列数据绘制成折线图,用于分析长期变化趋势。; 适合人群:具备一定地理信息系统(GIS)与气候数据处理基础,熟悉Python编程的科研人员或学生;尤其适用于从事气候变化、极端天气事件研究的相关从业者; 使用场景及目标:①开展区域性高温热浪时空演变分析;②结合GEE大数据平台高效提取遥感气象数据并进行本地化处理;③实现从数据获取、处理、指标计算到图形输出的完整流程示范; 阅读建议:此资源涉及多个专业库的协同使用,建议读者在Jupyter环境中实操运行代码,理解每一步的数据结构变化,重点关注几何区域裁剪、单位转换、时间序列操作及图表定制技巧。

2026-02-10

【人口统计学】基于INE数据的市政人口时间序列清洗与标准化:西班牙1996–2024年市镇级人口变化分析数据预处理流程

内容概要:本文档介绍了一个针对西班牙1996至2024年市政人口普查数据(Padrón Municipal)的清洗与标准化流程,旨在清理并统一来自西班牙国家统计局(INE)的多年度原始CSV数据,确保各年度和市镇间的数据一致性。处理流程包括导入数据、重命名列、拆分字段、调整列序、移除无数据年份(如1997年)、修复编码错误(如“幽灵代码”)以及合并历史上已整合的市镇记录,最终输出一个结构稳定、符合官方统计标准的清洁数据集,适用于后续的人口趋势分析和地理空间可视化。; 适合人群:具备Python和pandas基础的数据科学家、社会研究人员或政府数据分析人员,尤其是关注西班牙区域人口变化、城乡迁移或土地利用研究的专业人士。; 使用场景及目标:①用于构建长期人口变化指标,支持年度增长率、多时段趋势分析;②为GIS空间可视化提供高质量输入数据;③建立可复用的数据预处理流水线,提升从原始行政数据到分析就绪数据的效率。; 阅读建议:此资源聚焦于数据清洗的技术实现,建议使用者结合Jupyter Notebook逐步执行代码,重点关注市镇编码处理、缺失值诊断与历史合并逻辑,以便在类似行政数据集中推广应用。

2026-02-10

【地理信息科学】基于市政普查与GIS边界的西班牙市镇人口密度计算:1996-2024年行政区划单元数据集构建

内容概要:本文介绍了一个用于计算西班牙各市镇(municipality)年度人口密度(人/平方公里)的Jupyter Notebook程序。该程序基于西班牙国家统计局(INE)的市政户籍人口数据和国家地理研究所(CNIG)提供的官方行政区划边界,通过空间投影转换与面积计算,合并人口与地理数据,最终生成1996至2024年间每个市镇每年的人口密度数据集。项目采用严谨的空间参考系统(CRS),对本土及巴利阿里群岛、加那利群岛分别使用不同的UTM投影以减少面积计算误差,并剔除了不参与人口统计的异常行政单位,确保结果的准确性、可追溯性和可重复性。输出数据包含年份、市镇代码、名称、面积和人口密度,可用于后续的土地利用、农村迁移等多维度研究。 适合人群:具备Python编程基础、熟悉pandas/geopandas库的数据科学家或地理信息系统(GIS)研究人员,尤其是从事区域发展、人口统计或空间分析相关工作的专业人士; 使用场景及目标:① 构建长时间跨度的市镇级人口密度面板数据集;② 支持城乡发展、农村空心化、土地利用变化等社会科学研究;③ 为政策制定提供精细化的人口空间分布依据; 阅读建议:此资源强调方法透明与流程可复现,建议使用者结合代码逐段运行,关注CRS选择、边界匹配与数据清洗细节,并验证输入输出路径配置是否正确。

2026-02-10

地理信息系统西班牙多级行政区域关联表构建:市镇至农业区划的空间层级映射与数据治理

内容概要:本文介绍了一个用于构建西班牙行政地理层级关系表的技术流程,该表格将市镇(Municipio)与其所属的省(Provincia)、自治区(Comunidad Autónoma)以及可选的农业区域(Comarca Agraria)进行关联,支持多尺度空间分析。数据基于CNIG提供的市镇边界文件中的NATCODE编码字段提取行政区划代码,通过解析11位NATCODE结构(国家-自治区-省-市镇),剔除前两位国家代码“34”后,分别提取对应层级的行政区代码,并结合官方INE统计数据对市镇数量进行校验与清洗,排除如直布罗陀、主权飞地等非正式市镇区域,最终生成包含8132个有效市镇的标准化层级对照表。此外,还通过空间连接方式为市镇分配农业区信息,并导出CSV和GeoPackage格式供后续人口、土地利用等数据分析使用。; 适合人群:具备地理信息系统(GIS)基础知识和Python数据处理经验的研究人员或数据科学家,特别是从事区域经济、农业、人口迁移等领域空间分析的专业人士。; 使用场景及目标:① 构建西班牙多级行政单位之间的映射关系,实现跨尺度数据整合;② 支持将人口统计、农业产出、土地利用等不同来源的数据按市镇、省、自治区等行政级别进行聚合与分析;③ 提供可复用、可追溯的方法论框架,确保研究过程透明化和结果可重复。; 阅读建议:在学习和应用本方法时,应重点关注NATCODE编码结构的解析逻辑、非市镇实体的识别与过滤策略,以及空间连接过程中可能出现的边界匹配问题。建议结合实际数据运行代码,检查缺失值和异常情况,并根据具体研究需求调整是否包含农业区域等可选层级。

2026-02-10

【遥感影像分析】基于Sentinel-2与Cloud Score+的NBR指数变化检测:澳大利亚黑夏森林火灾影响评估

内容概要:本文是一段基于Google Earth Engine(GEE)平台编写的JavaScript代码,旨在分析澳大利亚2019年至2020年“黑色夏季”山火事件对地表的影响。通过选取特定时空范围内的Sentinel-2卫星影像,结合Cloud Score+数据进行云遮罩处理,提取火灾前后地表反射率的中值图像。利用归一化燃烧指数(NBR)计算火灾前后的植被损毁情况,并通过差值分析识别过火区域,最终在地图上可视化呈现火灾前后的SWIR合成影像及燃烧区域。; 适合人群:具备遥感基础知识与GEE平台操作经验的科研人员或地理信息系统(GIS)相关专业学生;熟悉JavaScript语法并关注自然灾害监测的技术人员。; 使用场景及目标:①用于大范围森林火灾影响评估与灾后恢复监测;②学习如何在GEE中实现时间序列遥感数据分析、云去除、指数计算与变化检测;③掌握NBR指数的应用及 burned area 提取方法。; 阅读建议:此资源以实际代码形式展示完整分析流程,建议结合GEE平台运行调试,深入理解每一步的数据处理逻辑,尤其是影像筛选、质量控制与指数构建的关键环节。

2026-02-10

【遥感与生态建模】基于多源卫星数据的牧牛适宜性评估系统:南苏丹西北部季节性牧场资源空间分布预测模型

内容概要:本文基于Google Earth Engine平台,构建了一个用于预测南苏丹西北部地区牛群分布可能性的空间模型。该模型综合了水可获得性、牧草质量、土地适宜性、地形坡度以及人类活动影响等多个环境因子,并结合当地双峰降雨季节特征,动态调整各因子权重,最终生成区域内的牛群出现概率图。通过遥感数据集(如CHIRPS降水、Sentinel-1/2影像、SRTM高程、JRC地表水、WorldPop人口密度和ESA土地覆盖)进行多源数据融合与指数计算,实现了对牛群栖息地偏好的量化评估,并支持高概率区域的提取与地图可视化,同时提供结果导出功能以便进一步应用。; 适合人群:具备地理信息系统(GIS)、遥感或生态建模背景的科研人员、自然资源管理者及农业发展规划相关从业者,熟悉Earth Engine平台操作者更佳。; 使用场景及目标:①支持畜牧业空间规划与放牧管理决策;②开展野生动物或家畜迁徙路径模拟研究;③在数据稀缺地区利用公开遥感数据进行环境适宜性建模;④为灾害应急(如干旱)下的牲畜转移提供潜在避难区识别依据; 阅读建议:此脚本强调实际编码实现与生态逻辑结合,建议使用者根据具体区域调整参数(如阈值、坐标范围、季节定义),并深入理解各指数构建原理以提升模型可解释性和适应性。

2026-02-10

【地理信息系统】基于Streamlit的GEE数据提取器侧边栏模块设计:认证状态监控与历史任务管理功能实现

内容概要:本文介绍了一个用于GEE(Google Earth Engine)数据提取器的侧边栏模块实现,涵盖了认证状态管理、设置弹窗、任务监控和历史记录加载四大功能。通过Streamlit构建用户界面,模块可显示GEE连接状态并支持重新认证,提供项目ID、存储路径、默认参数等配置选项的修改界面,实时展示最近的数据处理任务状态,并允许用户从历史记录中加载之前的运行配置以复用设置。代码结构清晰,结合了会话状态管理和外部服务调用,提升了工具的可用性和交互性。; 适合人群:具备Python编程基础,熟悉Web前端交互开发及地理空间数据分析的科研人员或开发者,尤其适用于使用GEE平台进行遥感数据处理的技术人员。; 使用场景及目标:①帮助用户快速检查和恢复GEE认证连接;②集中管理应用的各项配置参数;③实时监控GEE后台任务执行状态;④便捷地复现以往的数据提取任务。; 阅读建议:建议结合实际GEE开发环境运行代码,深入理解各组件如何与Streamlit框架集成,并关注会话状态在多组件间的数据共享机制,以便更好地扩展和定制功能。

2026-02-10

【地理信息系统】基于Python的流域特征分析工具:CSV数据可视化与统计报告生成系统设计

内容概要:本文介绍了一个用于分析流域特征的Python脚本,旨在对从Google Earth Engine导出的CSV格式流域数据进行统计分析与可视化。脚本主要功能包括加载数据、分析流域面积分布、平均坡度、森林覆盖率、土地覆盖类型及分类分布,并生成图表和文本报告。通过Pandas进行数据处理,Matplotlib和Seaborn实现数据可视化,最终输出包括直方图、箱线图、散点图和饼图等多种图形以及汇总统计信息的文本报告。; 适合人群:具备Python编程基础,熟悉Pandas、Matplotlib等数据处理与可视化工具的数据分析师、地理信息系统(GIS)研究人员或环境科学相关领域的科研人员;尤其适合从事水文分析、生态评估等空间数据分析工作的从业者。; 使用场景及目标:① 对遥感导出的大规模流域数据进行快速统计分析;② 探索流域面积、坡度、森林覆盖率之间的关系;③ 生成可视化图表辅助科研报告撰写或决策支持;④ 自动化生成流域特征摘要报告,提升数据分析效率。; 阅读建议:使用前需安装所需依赖库,建议结合实际数据运行脚本并调试各分析模块,可根据具体研究需求扩展分析指标或修改可视化样式。

2026-02-10

【地理信息系统】基于Folium与Earth Engine的流域特征分析工具:支持交互式水文盆地可视化与地形统计计算

内容概要:本文介绍了一个基于Streamlit和Google Earth Engine(GEE)构建的交互式Web应用,用于对HydroBASINS流域进行地理空间分析。系统通过Folium实现动态地图可视化,支持用户输入经纬度与流域层级,自动提取目标流域边界,并集成多源遥感数据(如SRTM高程、坡度、ESA WorldCover土地覆被),计算关键指标如面积、平均坡度和森林覆盖率。利用缓存机制优化性能,避免重复调用GEE,同时通过状态管理保持界面响应性。地图支持多种底图(如卫星、街道、地形)和叠加层切换,增强空间分析能力。; 适合人群:具备Python编程基础,熟悉地理信息系统(GIS)或遥感数据处理的科研人员、环境工程师及水利相关领域从业者;有一定Web开发经验并希望将地球引擎分析成果可视化的开发者;; 使用场景及目标:①快速获取指定位置的流域特征参数,支持水资源管理与生态评估;②教学演示中展示流域划分与地表特征的空间关系;③作为轻量级工具辅助野外考察前期规划与区域对比分析; 阅读建议:此资源以实际代码实现地理分析全流程,不仅涉及前端交互设计,还融合了后端数据处理逻辑,建议结合GEE平台文档与Folium库手册同步学习,并在本地部署运行以深入理解各模块协作机制。

2026-02-10

【地理信息系统】基于Streamlit与GEE的流域特征分析工具:HydroBASINS水文盆地空间数据可视化与统计计算系统设计

内容概要:本文介绍了一个基于Streamlit和Google Earth Engine(GEE)的交互式Web应用,用于对HydroBASINS流域进行地理空间分析。该应用利用Folium实现地图可视化,结合持久化状态管理,支持用户输入经纬度坐标与流域层级,自动提取并展示目标流域的关键属性,包括面积、平均坡度、森林覆盖率等,并在地图上叠加SRTM高程数据和流域边界。系统通过缓存机制优化性能,避免重复调用GEE计算资源,提升响应效率。; 适合人群:具备Python编程基础,熟悉地理信息系统(GIS)或遥感数据处理的科研人员、环境分析师及水利领域技术人员,尤其是有一定Web前端交互开发经验的开发者; 使用场景及目标:①用于快速评估特定区域流域的地形与土地覆盖特征;②辅助水资源管理、生态环境研究和地理教学中的可视化分析;③为构建轻量级GEE流域分析工具提供可复用的技术架构参考; 阅读建议:使用前需完成GEE账户认证配置,建议结合实际项目需求调整流域等级与分析参数,并深入理解缓存机制与状态控制逻辑以优化应用性能。

2026-02-10

【地理信息系统】基于Google Earth Engine的流域特征分析:利用geemap实现本地化水文盆地分类与可视化系统

内容概要:本文介绍了一个基于Python的本地化脚本,利用geemap库对HydroBASINS水文流域数据进行特征分析。脚本实现了在指定区域内自动提取流域面积、平均坡度、土地覆盖类型(如森林、水域、建成区等)等关键地理参数,并通过Google Earth Engine(GEE)平台完成空间计算。支持按分位数或绝对阈值对流域进行分类,生成交互式HTML地图可视化结果,并将统计结果导出为本地CSV文件,便于进一步分析。整个流程包括GEE初始化、数据加载、属性计算、分类处理、地图绘制与数据导出。; 适合人群:具备Python编程基础,熟悉地理信息系统(GIS)和遥感数据处理的科研人员或环境领域技术人员,尤其是从事水文、生态、土地利用研究的研究者。; 使用场景及目标:①快速评估特定区域内的流域地貌与土地覆被特征;②生成可交互的地理分析报告用于展示或教学;③批量处理中小规模流域统计数据并集成到本地分析流程中;④作为自动化地理分析工具链的一部分。; 阅读建议:使用前需完成Google Earth Engine账户认证与依赖安装,建议在VS Code等支持虚拟环境的编辑器中运行。应重点关注AOI范围设置、分类逻辑选择(分位数/绝对值)以及各空间分辨率参数调整,以优化性能与精度。

2026-02-10

【水文地理分析】基于Google Earth Engine的流域特征化系统设计:HydroBASINS与SRTM数据集成的自动化流域分类工具开发

内容概要:本文介绍了一个基于Google Earth Engine(GEE)平台的模块化脚本系统,用于流域盆地的分析与特征化。该系统整合了HydroBASINS、SRTM地形数据和ESA WorldCover土地覆盖数据,实现了从数据加载、几何处理、流域过滤、坡度与覆盖分析到分类可视化和结果导出的完整流程。脚本支持交互式操作,如高亮显示特定类别流域或检查单个流域属性,并提供配置验证、地图中心定位、统计展示与云端导出功能,适用于区域水文地理研究。; 适合人群:具备一定遥感与地理信息系统(GIS)基础知识,熟悉Google Earth Engine平台的科研人员或环境领域技术人员;适合从事水文分析、生态评估或自然资源管理的相关工作者。; 使用场景及目标:①对指定区域的兴趣范围(AOI)进行自动化的流域特征提取与分类;②实现多源地理空间数据集成分析,支持环境监测、流域规划与水资源管理决策;③通过交互函数highlightClass和inspectBasin辅助精细化空间研判与成果验证; 阅读建议:使用前需将脚本中所有'USERNAME'替换为实际GEE用户名,确保模块路径正确;建议结合配置文件config.js灵活调整参数,优先运行初始化检查,并配合地图可视化逐步调试流程,以掌握各模块协作机制。

2026-02-10

【遥感影像处理】基于Google Earth Engine的多源卫星数据下载与TIFF图像可视化分析系统实现

内容概要:本文主要介绍如何利用Google Earth Engine(GEE)平台下载指定区域的卫星遥感影像数据。文中通过Python脚本创建研究区域多边形地理围栏(geojson格式),并调用自定义模块`geeutils`从GEE服务器检索特定时间段内的多源卫星影像(如Landsat 5/7/8/9及Sentinel-2等),支持多种波段组合(包括可见光、近红外、短波红外、全色等)。脚本可自动过滤云量超过设定阈值(默认10%)的影像,并将下载结果保存为TIFF格式。此外,还提供了使用`tiffutils`加载和可视化已下载影像的功能,支持按不同分辨率比例尺绘图。整个流程适用于批量处理多个站点的数据获取任务。; 适合人群:具备Python编程基础,熟悉地理信息系统(GIS)与遥感数据处理的科研人员或技术人员,尤其是从事环境监测、土地利用、海岸带研究等相关领域工作者。; 使用场景及目标:①自动化获取全球任意区域的高分辨率卫星影像;②支持多传感器数据融合研究;③为后续遥感分析(如植被指数计算、地表温度反演等)提供数据准备;④构建长时间序列遥感数据库。; 阅读建议:使用前需配置好GEE开发环境并安装相关依赖库,建议结合实际研究区调整坐标范围、时间窗口与波段选择,灵活修改参数以适配不同应用场景。

2026-02-13

【遥感数据处理】基于Google Earth Engine的ASTER影像地表温度反演:冰川区域热红外遥感监测与CSV导出系统实现

内容概要:本文是一段基于Google Earth Engine(GEE)平台编写的JavaScript代码,主要用于处理ASTER卫星遥感数据,计算研究区域内地表温度(LST)。代码首先加载指定区域的矢量边界,筛选符合条件的ASTER影像(时间范围为2022–2024年、云量低于20%、包含B13波段),并通过数字量化值(DN)转换为辐射亮度,再利用普朗克函数反演亮温,最后结合地表发射率(设定为0.98)进行温度校正,得到以摄氏度为单位的地表温度图像。随后对每个影像在指定区域进行平均值统计,生成每日地表温度时间序列数据,并导出为CSV格式存储到Google Drive。; 适合人群:具备遥感基础知识和GEE平台操作经验的科研人员或地理信息系统(GIS)技术人员,熟悉JavaScript语法者更佳。; 使用场景及目标:①用于长时间序列地表温度变化监测;②支持冰川、高山或寒区等地表热环境研究;③适用于需要批量处理多时相ASTER热红外遥感数据的应用场景。; 阅读建议:此代码可直接在GEE云端平台运行,建议结合具体研究区调整AOI范围与参数设置,并验证发射率和波段参数的适用性以提高结果准确性。

2026-02-13

【遥感与地理信息】多源卫星数据融合的地表温度反演:基于Google Earth Engine的冰面温度时序分析系统设计

内容概要:本文是一段基于Google Earth Engine(GEE)平台编写的JavaScript代码脚本,旨在对多个卫星遥感数据源(包括VIIRS、MODIS、Landsat 7/8/9)进行地表温度(LST)的时间序列分析与区域统计。脚本首先定义研究区域aoi,随后分别加载各传感器的每日LST影像数据,统一将单位从开尔文转换为摄氏度,并通过clip操作限定在研究区内。利用reduceRegion方法计算每个日期影像在区域内的平均LST值,生成按日统计的特征集合,并导出为CSV文件供后续分析使用。最后,将Landsat系列数据合并,实现跨传感器的地表温度综合分析。 适合人群:熟悉遥感数据处理与GEE平台的科研人员或地理信息系统(GIS)技术人员,具备一定JavaScript编程基础者更佳;适用于从事环境监测、气候变化、冰面温度变化等研究领域的用户。 使用场景及目标:①实现多源遥感数据(VIIRS、MODIS、Landsat)在指定区域和时间段内的地表温度提取与时间序列构建;②支持长时间序列冰面或地表温度变化趋势分析,服务于气候或环境研究;③为不同卫星传感器数据融合提供技术参考路径。; 阅读建议:需结合Google Earth Engine开发环境实际运行调试,注意区域边界定义、云量过滤阈值及影像分辨率差异对结果的影响,建议根据具体研究区和需求调整参数设置。

2026-02-13

【遥感数据分析】基于NDVI时间序列的月度异常检测:2021-2025年植被变化监测数据预处理系统实现

内容概要:本文介绍了一个基于Pandas处理NDVI(归一化植被指数)数据的Python脚本,主要流程包括从CSV文件加载数据、筛选关键字段、数据类型转换、计算月度异常值等步骤。脚本首先读取2021至2025年的月度NDVI数据,提取“year”、“month”和“ndvi”三列,并确保数据类型正确;随后按月份计算五年间的平均NDVI作为月度基线,进而计算每条记录相对于其对应月份基线的异常值(anomaly),最终将包含异常值的完整数据集保存为新的CSV文件。该处理流程有助于识别植被变化中的异常趋势,适用于生态环境监测等场景。; 适合人群:具备Python编程基础,熟悉Pandas数据处理的科研人员或数据分析初学者,尤其适合从事遥感、生态、环境监测等相关领域的技术人员。; 使用场景及目标:①用于时间序列遥感数据分析,提取植被生长异常信息;②构建长期生态监测系统中的数据预处理模块;③学习如何利用Pandas进行分组统计与异常检测。; 阅读建议:此资源侧重于实际数据处理流程的实现,建议结合具体数据集运行代码,理解每一步的数据变换逻辑,并可进一步扩展至多区域对比或可视化分析。

2026-02-13

【水文数据分析】基于Pandas的洪水面积异常检测:月度洪涝遥感数据基准线建模与偏差计算系统实现

内容概要:本文介绍了一个基于Python Pandas库的数据处理脚本,旨在计算洪水面积的月度异常值。脚本首先加载2021至2025年间的月度洪水数据,提取年份、月份和淹没面积三列关键信息,并确保数据类型正确。随后,按月份计算五年间各月的平均洪水面积作为基准线(baseline),并将原始数据与该基准线合并,进而计算出每个月洪水面积相对于历史同期的异常值(anomaly)。最终结果保存为新的CSV文件,便于后续分析使用。整个流程实现了典型的时间序列异常检测预处理步骤。; 适合人群:具备基础Python编程能力,熟悉Pandas数据处理的数据分析师或科研人员,尤其适合从事气候、水文等环境领域研究的技术人员。; 使用场景及目标:①用于构建长时间序列下的月度基准模型;②识别特定月份洪水事件是否显著偏离历史平均水平;③为极端天气事件分析提供量化依据; 阅读建议:此资源侧重于实际数据清洗与统计建模的结合应用,在学习过程中应重点关注groupby操作、均值基准构建方法以及异常值计算逻辑,建议结合本地数据运行代码以加深理解。

2026-02-13

【遥感数据分析】基于GEE平台的CHIRPS降雨数据处理:北美地区2021–2025年月均降水量提取与CSV导出系统实现

内容概要:本文介绍了一个基于Google Earth Engine(GEE)平台的Python脚本,旨在提取2021年至2025年北美地区的月度降雨量数据。脚本调用CHIRPS每日降水数据集,结合预定义的北美地理范围,逐月计算区域内平均降雨量,并将结果汇总为特征集合,最终导出为CSV文件存储至Google Drive。核心流程包括初始化GEE项目、加载遥感影像集合、按时间序列进行月度聚合、利用reduceRegion方法计算大陆尺度均值,以及启动数据导出任务。 适合人群:具备Earth Engine基础操作能力、熟悉Python语言及遥感数据分析的科研人员或环境监测相关从业人员;适合从事气候研究、水文建模或地理信息系统(GIS)工作的技术人员。; 使用场景及目标:①获取长时间序列的区域级降水统计数据用于气候变化分析;②构建自动化遥感数据处理流水线,支持后续的时空趋势建模与可视化展示;③作为气象数据批量处理的教学示例,帮助理解GEE中影像集合的时间分割与空间统计方法。; 阅读建议:此资源侧重于实际编程实现,建议使用者结合GEE开发环境动手运行并调试代码,同时参考官方API文档深入理解reducer操作、日期处理机制及导出任务配置方式,以便迁移到其他区域或变量的数据处理流程中。

2026-02-13

【遥感数据分析】基于Google Earth Engine的NDVI时序分析:北美地区2021–2025年月度植被指数提取与CSV导出系统实现

【遥感数据分析】基于Google Earth Engine的NDVI时序分析:北美地区2021–2025年月度植被指数提取与CSV导出系统实现

2026-02-13

【遥感与灾害监测】基于Sentinel-1 SAR影像的洪水面积提取:北美洲月度洪涝变化分析与CSV数据导出系统实现

【遥感与灾害监测】基于Sentinel-1 SAR影像的洪水面积提取:北美洲月度洪涝变化分析与CSV数据导出系统实现

2026-02-13

机器学习基于ElasticNet的遥感影像回归建模:地理空间交叉验证与Google Earth Engine集成应用

内容概要:本文介绍了一个基于Python的机器学习建模流程,重点在于使用ElasticNet回归模型对森林高度进行预测。通过加载GeoPandas地理数据集,采用空间交叉验证(spatial k-fold)划分训练与验证集,避免因空间自相关导致的过拟合问题。利用Optuna实现贝叶斯超参数优化,自动搜索最优的alpha和l1_ratio参数。完成调参后,模型在全部数据上重新训练,并输出各折交叉验证的RMSE、MAE和R²指标。文章还展示了如何将模型系数可视化为水平条形图,突出显示前三大重要特征,并提供工具函数将训练好的模型系数转换为Google Earth Engine(GEE)可用的JavaScript代码格式,便于部署到云端进行大规模遥感影像推理。此外,配套实现了空间分块图、1:1预测效果图等可视化功能,增强结果可解释性。; 适合人群:具备Python编程基础、熟悉机器学习与地理空间数据分析的科研人员或工程师,尤其是从事遥感、生态监测等领域并希望将本地模型迁移至Google Earth Engine的应用开发者。; 使用场景及目标:① 实现高鲁棒性的空间数据建模与交叉验证;② 利用ElasticNet进行正则化回归建模并优化超参数;③ 将本地训练的模型无缝集成到GEE平台用于大范围制图;④ 可视化模型性能与特征重要性,支持决策与报告输出。; 阅读建议:此资源强调从数据预处理、模型调优到生产部署的完整链路,建议读者结合代码逐步实践,重点关注空间分块策略、Optuna优化机制以及模型导出技巧,同时可扩展应用于分类或其他线性模型任务。

2026-02-10

【遥感数据融合】基于机器学习的Landsat与Sentinel多源卫星影像地表温度降尺度模型:10米高分辨率制图方法研究

内容概要:该文档为一个基于Google Earth Engine(GEE)平台的地表温度(LST)降尺度技术框架,旨在将Landsat 8/9的30米分辨率地表温度数据提升至10米空间分辨率。通过融合Sentinel-2多光谱影像与Sentinel-1合成孔径雷达(SAR)数据提取预测变量(如NDVI、NDBI、VV/VH后向散射等),采用多种机器学习算法(包括梯度提升树GBT、随机森林RF、支持向量机SVM和CART)进行建模,并引入残差校正方法保障粗尺度一致性。流程涵盖云掩膜、干日筛选、多源数据预处理、超参数网格搜索优化、模型训练与验证(对比MODIS产品)等完整环节,支持用户自定义研究区域、气候条件和算法参数。; 适合人群:具备遥感与地理信息系统(GIS)基础,熟悉Google Earth Engine平台操作,从事环境监测、城市热岛、气候变化等相关领域的科研人员或研究生;有Python或JavaScript脚本经验者更佳;; 使用场景及目标:① 实现高精度城市热环境制图,服务于城市规划与生态环境评估;② 比较不同机器学习算法在遥感降尺度任务中的性能表现;③ 开展长时间序列地表温度变化分析;④ 学习并复现完整的遥感数据处理与机器学习集成流程; 阅读建议:建议使用者首先运行网格搜索(grid search)模块以确定最优超参数组合,随后关闭该模式执行全时序降尺度处理;应重点关注研究区适配设置(如坐标系、边界、降水数据源)与数据可用性提示(如“无有效训练数据”时的应对策略),并结合地图可视化结果进行质量检验。

2026-02-10

【地理信息技术】基于GEE平台的城市土地覆盖分类:大曼彻斯特建成区与裸地空间分布特征分析

内容概要:本文介绍了如何利用Google Earth Engine(GEE)平台对英国大曼彻斯特地区进行土地覆盖分析。首先定义了研究区域的大致地理边界,随后加载并裁剪了ESA WorldCover提供的10米分辨率全球土地覆被数据,重点提取城市建成区(分类值50)和裸地/稀疏植被区(分类值60)两类地表覆盖类型,并分别进行可视化展示。通过创建二值掩膜图层,突出显示建成区(红色)和潜在棕地(棕色),用于识别城市发展与未充分利用土地的空间分布。; 适合人群:具备遥感基础知识和GEE平台基本操作能力的科研人员或地理信息系统(GIS)相关专业学生;有一定编程经验、从事环境监测或城市规划领域的技术人员。; 使用场景及目标:①开展城市扩张与土地利用变化研究;②识别城市中可能存在的废弃或未开发土地(如棕地),支持可持续城市更新决策;③学习如何在GEE中处理高分辨率土地覆被数据并实现分类掩膜与地图可视化。; 阅读建议:建议读者结合代码实际运行于GEE平台,理解每一步的数据过滤、图像处理与可视化设置,并可进一步拓展分析其他土地覆盖类别或引入时间序列数据以增强分析深度。

2026-02-10

【地理空间计算】基于Hexagonal Lattice的层次化锥形掩码系统:高效图结构构建与几何优化方法研究

内容概要:本文档为一个综合性能基准测试套件的Python实现代码,主要用于评估地理空间层级结构中多个关键计算阶段的优化效果。测试涵盖四个核心阶段:圆锥体构建(Phase 3)、边结构构建(Phase 4)、层级一致性过滤(Phase 5)和聚合索引映射(Phase 6)。每个阶段均对比原始实现与优化版本在执行时间、内存消耗及正确性方面的表现,并记录加速比。系统基于六边形网格(Hexagonal Lattice)和H3地理索引,结合GeoPandas与NumPy进行高效空间数据处理,重点提升大规模地理图构建中的性能瓶颈。; 适合人群:具备地理信息系统(GIS)、图神经网络或高性能Python编程经验的研发人员,尤其是从事空间数据分析、城市计算或大规模图构建的技术人员。; 使用场景及目标:①评估地理层级结构中不同模块的优化成效;②验证向量化操作、空间排序和缓存机制对性能的提升作用;③为后续部署高分辨率地理模型(如res10)提供性能依据和技术参考。; 阅读建议:此资源以实际代码形式呈现,建议结合日志输出运行基准测试,重点关注各阶段的速度提升和内存变化,同时参考GEOMETRIC_OPTIMIZATIONS.md文档理解具体优化策略。

2026-02-10

实验管理基于Python的机器学习实验管理系统设计:自动化配置与结果存储工具开发

内容概要:本文介绍了一个用于管理实验项目的Python类`ExperimentManager`,旨在自动化创建标准化的实验目录结构并管理配置文件。该工具支持创建带有时间戳的实验文件夹,内置`data`、`analysis`、`plots`、`logs`和`models`等子目录,并自动生成`config.yaml`配置文件和`README.md`说明文档。同时提供实验列表查看、路径获取和模板加载等功能,便于科研或开发过程中对实验进行系统化管理。代码还包含辅助函数用于加载配置和保存实验结果,提升了项目组织的规范性和可复现性。; 适合人群:从事数据科学、机器学习或软件研发,有一定Python编程经验的开发者或研究人员;尤其适用于需要频繁开展实验并管理大量实验数据与结果的人员。; 使用场景及目标:①在模型训练、算法测试等场景中统一实验项目结构;②提升团队协作效率,确保每个实验可追溯、可复现;③减少重复性的文件初始化工作,提高开发和研究效率。; 阅读建议:建议结合实际项目尝试运行代码,理解目录生成逻辑与配置管理机制,可根据具体需求扩展功能,如增加实验状态追踪或版本控制集成。

2026-02-10

【地理空间分析】基于H3网格的荷兰区域多分辨率划分:结合GeoPandas与SRAI的遥感数据覆盖评估系统实现

内容概要:本文介绍了一个基于Python的空间数据处理流程,旨在为荷兰地区生成多分辨率的H3六边形网格(H3 hexagons),并评估AlphaEarth遥感数据在该区域的覆盖范围。程序首先获取荷兰的地理边界(从Natural Earth数据集或使用默认边界框),然后验证本地存储的AlphaEarth TIFF文件的空间覆盖情况,接着利用SRAI库中的H3Regionalizer工具,在指定的多个分辨率(5到10)下生成H3区域网格。每个分辨率的六边形数量、单个六边形面积及总面积均被计算并保存。最终,所有结果包括边界、六边形网格(以GeoParquet和部分GeoJSON格式)以及统计摘要均输出至指定目录,便于后续空间分析与建模使用。; 适合人群:具备地理信息系统(GIS)基础知识和Python编程经验,从事遥感、城市规划、空间数据分析等相关领域的研究人员或技术人员。; 使用场景及目标:①为荷兰地区构建标准化的空间分区单元用于多尺度地理分析;②评估遥感数据(如AlphaEarth)的空间覆盖完整性;③支持后续基于H3网格的地表特征建模与空间机器学习任务; 阅读建议:此资源侧重于实际空间数据处理流程的自动化实现,建议使用者熟悉geopandas、rasterio、H3网格系统及相关地理投影变换概念,并根据实际数据路径配置环境变量后运行代码。

2026-02-10

【地理空间分析】基于PCA与MiniBatchKMeans的遥感嵌入聚类可视化:多区域H3网格高效渲染系统设计

内容概要:本文介绍了一个用于高效地理空间聚类可视化的Python脚本,旨在对大规模地理嵌入数据(如H3网格)进行快速聚类与可视化。脚本支持多个研究区域(如珠三角、荷兰、卡斯卡迪亚),通过加载Parquet格式的地理嵌入数据,提取AlphaEarth模型的64维嵌入向量,并应用PCA降维和MiniBatchKMeans聚类算法实现多尺度聚类分析。为提升渲染效率,采用两种优化策略:一是对同簇相邻六边形进行几何融合(dissolve),二是利用Datashader进行高性能光栅化渲染。最终生成带有经纬网标注的高质量聚类图,适用于大范围地表模式识别与城市结构分析。; 适合人群:具备Python编程能力、熟悉地理信息系统(GIS)与机器学习基础的科研人员或数据工程师,尤其适合从事遥感、城市规划、环境建模等领域工作的技术人员;建议有geopandas、scikit-learn和datashader使用经验者阅读。; 使用场景及目标:①对大规模H3网格嵌入数据进行快速聚类分析与可视化;②比较不同聚类数量与配色方案下的空间分布模式;③在有限计算资源下加速地理空间图形渲染流程;④支持多区域配置扩展,便于跨地域对比研究。; 阅读建议:此资源强调性能优化与实际部署效果,学习时应重点关注PCA降维、MiniBatchKMeans并行计算、dissolve与datashader的适用条件及坐标系转换细节,建议结合具体数据集调试参数以掌握其在不同分辨率与区域下的表现差异。

2026-02-10

【地理空间深度学习】基于LatticeUNet的荷兰地区AlphaEarth嵌入增强:六边形格网图神经网络训练框架设计

内容概要:本文介绍了一个基于PyTorch实现的LatticeUNet模型训练系统,用于处理荷兰地区的AlphaEarth嵌入数据。该系统构建在六边形格网图结构上,利用地理空间邻接关系进行深度学习建模。核心流程包括加载高分辨率H3索引的嵌入特征与地理区域数据、构造包含多环邻居连接的六边形格网图、搭建并训练LatticeUNet模型(采用GCN卷积、图归一化和跳跃连接等技术),并通过重构损失优化模型参数。训练过程中记录损失曲线与学习率变化,并最终提取融合空间上下文信息后的高质量嵌入表示,支持后续下游任务如地表覆盖分类或城市功能区识别。; 适合人群:具备Python编程能力、熟悉深度学习与图神经网络的研究人员或工程师,尤其适用于从事遥感、地理信息系统(GIS)和空间数据分析相关工作的专业人士。; 使用场景及目标:①对地理空间嵌入数据进行上下文增强与特征提炼;②研究基于规则格网图结构的GNN在地球观测数据中的应用;③实现大规模区域级环境感知与土地利用分析。; 阅读建议:建议结合项目目录结构与配置文件理解代码逻辑,重点关注HexagonalLatticeConstructor与LatticeUNet模块的设计细节,在实际部署时可根据硬件条件调整批大小与训练轮次,并注意地理数据索引对齐问题。

2026-02-10

【地理空间计算】基于层次化锥形掩膜的性能优化:高分辨率地理数据处理系统设计

内容概要:本文档为一段用于测试与对比原始与优化版本“锥体构建”(cone construction)性能的Python基准测试代码,主要应用于地理空间层级结构中的邻域掩码系统(Hierarchical Cone Masking System)。代码实现了加载地理区域数据、分别运行原始和优化后的锥体创建方法、记录执行时间与内存消耗,并验证两者结果一致性。通过对比运行效率与资源占用,评估优化算法在速度和内存使用上的提升效果,确保优化不牺牲结果正确性。; 适合人群:具备Python编程经验、熟悉地理信息系统(GIS)数据处理与性能调优的开发人员或科研人员,尤其适用于从事空间数据分析、大规模图结构处理的技术人员。; 使用场景及目标:①评估地理层级结构中邻域锥体生成算法的性能改进效果;②验证优化算法在保持结果一致性的前提下是否显著减少运行时间和内存占用;③为后续大规模空间计算提供高效、可靠的锥体构建方案。; 阅读建议:此资源以实际代码形式呈现,建议结合项目工程环境运行调试,重点关注`create_all_cones`与`create_all_cones_optimized`函数的行为差异,理解空间排序(spatial_sort)、几何验证(validate_geometry)等优化策略的作用机制,并通过日志输出分析性能变化。

2026-02-10

【遥感数据处理】基于Google Earth Engine的分块导出系统:AlphaEarth年度卫星嵌入数据地理空间分析工具设计

内容概要:本文介绍了一个基于Google Earth Engine(GEE)的Python工具类TiledAlphaEarthExporter,用于按地理区域分块导出AlphaEarth卫星嵌入数据集。该工具支持自定义研究区域、年份、瓦片大小与重叠度,并自动创建网格化瓦片,逐一导出为GeoTIFF格式,同时生成标准化命名文件并保存详细的元数据信息。代码实现了与现有处理流程的兼容性,包括命名规范、坐标参考系统(EPSG:4326)以及与下游分析管道的集成支持。; 适合人群:具备Python编程基础、熟悉geopandas、shapely、earthengine-api等地理空间处理库的科研人员或遥感工程师,尤其适用于从事大规模地理模型训练与部署的技术团队;; 使用场景及目标:① 将大范围区域划分为固定尺寸且带重叠缓冲区的瓦片,便于分布式导出与后续拼接处理;② 自动化批量导出高分辨率卫星嵌入数据,支持城市表征学习、环境监测等任务的数据准备;③ 生成统一命名规则的文件和结构化元数据,保障多时相或多区域数据的一致性与可追溯性; 阅读建议:此资源侧重于工程实现与生产级数据导出流程构建,建议结合实际GEE项目配置(如服务账户、.env密钥管理)进行调试,并关注导出任务的调度频率与配额限制,避免请求过载。

2026-02-10

【遥感数据处理】基于GeoPandas与Rasterio的遥感影像瓦片集成验证:地理空间覆盖一致性与命名规范检测系统设计

内容概要:本文介绍了一个用于验证地球引擎(Earth Engine)分块导出数据与AlphaEarth处理流程集成一致性的Python工具类TileIntegrationValidator。该工具通过加载元数据文件,对瓦片数据的命名规范、地理覆盖范围、重叠一致性、处理器兼容性以及坐标系统等方面进行系统性校验,并生成详细的验证报告。代码实现了多个验证模块,包括基于正则表达式的文件名匹配、利用GeoPandas和Shapely进行空间几何运算的覆盖率分析、相邻瓦片重叠检测、与现有处理器的兼容性测试及WGS84坐标系合规检查。最终汇总各项结果生成JSON格式报告并输出可视化摘要。; 适合人群:具备Python编程基础,熟悉地理信息系统(GIS)数据处理,从事遥感数据分析或空间数据工程的技术人员,尤其是工作1-3年的研发人员。; 使用场景及目标:①确保大规模地理空间瓦片数据在导出后能正确接入下游处理流程;②提升数据预处理阶段的质量控制自动化水平,减少人工核查成本;③支持多区域、多年度的空间数据产品标准化验证。; 阅读建议:此资源以实际项目中的数据质量保障为核心,建议结合具体GIS项目实践,运行代码并调试不同研究区域的数据,深入理解各验证环节的设计逻辑和技术实现细节。

2026-02-10

【遥感与地理信息】基于Google Earth Engine的AlphaEarth年度嵌入数据导出工具:城市区域多尺度特征提取系统实现

内容概要:本文介绍了一个用于从Google Earth Engine获取AlphaEarth卫星嵌入数据的Python脚本,重点实现了与地球引擎交互的核心功能。脚本通过命令行参数配置研究区域、年份、分辨率和导出路径,加载指定区域的GeoJSON边界并转换为Earth Engine可识别的几何对象,进而筛选指定年份的卫星影像数据集(如GOOGLE/SATELLITE_EMBEDDING/V1/ANUAL),执行裁剪与拼接操作后导出为GeoTIFF文件至Google Drive。程序还包含任务监控机制,实时反馈导出进度与状态,并通过日志记录提升可维护性。; 适合人群:具备Python编程基础、熟悉地理空间数据处理(如GeoPandas)及遥感平台(如Google Earth Engine)的操作人员,适用于科研人员或GIS开发者; 使用场景及目标:①批量导出特定区域和时间的高分辨率卫星嵌入特征;②集成到城市遥感、环境监测等机器学习 pipeline 中作为数据预处理模块;③自动化遥感数据获取流程,提高研究效率; 阅读建议:使用前需正确配置Earth Engine服务账户权限与.env凭证文件,确保边界文件路径规范(data/boundaries/下),并根据实际需求调整scale与maxPixels参数以避免导出失败。

2026-02-10

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除