自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

此星光明博客

地理信息和卫星遥感云计算专业指导

  • 博客(4140)
  • 资源 (1934)
  • 收藏
  • 关注

原创 GEE土地分类:一文读懂精度评定—混淆矩阵confusion matrix、整体精度OA、用户者精度、生产者精度、kappa系数和F1score系数含案例

本文介绍了如何在 Google Earth Engine (GEE) 中构建和分析混淆矩阵,以评估分类模型的性能。首先,通过 ee.Array 构建混淆矩阵,并展示了如何指定自定义类标签。接着,计算了多种性能指标,包括准确率、Kappa 值、F1-score、消费者准确率和生产者准确率。此外,还演示了如何计算不同类别的 F1-score。最后,通过一个实际案例,展示了如何利用 GEE 进行土地分类,并评估分类器的性能,包括训练和验证样本的准确率、Kappa 值等指标。这些步骤帮助用户理解模型的优缺点,并进行

2025-05-25 13:00:00 2

原创 使用 GAUL 数据集在 Google Earth Engine 中创建国家级边界

使用 GAUL 数据集在 Google Earth Engine 中创建国家级边界简介本教程演示了如何使用全球行政单元层(GAUL)数据集在谷歌地球引擎(GEE)中从次国家级行政单元(Level 1)创建国家级边界(Level 0)。您将学习如何将 Level 1 行政边界聚合以创建国家级边界,处理 GEE 的限制,并使用 Python 实现替代解决方案。第一部分:了解 GAUL 数据集全球行政单元层(GAUL)数据集由联合国粮食及农业组织(FAO)开发和管理。

2025-05-25 10:00:00 2

原创 Google Earth Engine:基于MOD16A2GF中蒸散发数据ET孟加拉国的逐月降雨异常数据,并可视化了每月的降雨偏差

本文介绍了如何使用 Google Earth Engine (GEE) 分析孟加拉国的降雨异常。首先,导入国家边界数据并选择孟加拉国区域。接着,导入 MODIS 数据集中的降雨(蒸散发)数据,并计算所有年份中每个月的平均值。通过设置起始日期和创建时间序列,按月计算降雨异常值,并生成柱状图进行可视化。最后,将降雨异常数据添加到地图上,帮助理解降雨模式及其变化。该方法对气候研究和农业管理具有重要意义。

2025-05-25 09:45:00 3

原创 GEE案例分析:基于Sentinel-2 图像计算了特定月份的平均值下载和导出利用for each和map函数实现

本篇博客介绍了如何使用 Google Earth Engine (GEE) 处理 Sentinel-2 卫星图像,计算特定月份的平均值,并将结果导出到 Google Drive。首先,定义感兴趣区域 (ROI),然后通过云掩膜函数去除云层影响。接着,编写函数计算每月平均图像,并构建包含这些图像的集合。最后,将每个月的平均图像可视化并导出到 Google Drive。该方法适用于环境监测、土地利用变化分析等领域,提供了详细的代码示例和步骤说明。

2025-05-25 08:00:00 1

原创 GEE教程:LANDSAT 8 & 9 / TOA / Tier 1数据的NDVI、NDSI、NDWI、NDMI、NDGI的直方图和最大、小值统计以及下载

LANDSAT 8 & 9 / TOA / Tier 1数据的NDVI、NDSI、NDWI、NDMI、NDGI的直方图和最大、小值统计以及下载。

2025-05-24 14:30:00 13

原创 LBA-ECO CD-04 土壤呼吸,巴西塔帕若斯国家森林 83 公里塔楼场地

本数据集报告了巴西帕拉市 km 83 站点涡流通量塔附近采伐森林土壤的二氧化碳通量。自动土壤呼吸测量数据由 15 个于 2001 年 8 月安装在原始森林中的监测室收集。数据收集时间为 2001 年 12 月 19 日至 2002 年 3 月 1 日。该数据集包含一个逗号分隔的数据文件。

2025-05-24 14:23:40 452

原创 GEE森林物候监测:第一步找出2001-2023年的森林分布区域

NDVI 是通过近红外(NIR)和红光(Red)波段的反射率计算得出的,表达植被的绿度和生长状况。

2025-05-24 08:00:00 12

原创 GEE训练教程:利用MODIS的NDVI数据,分析2001年至2024年间的干旱情况,并将结果可视化和导出

本文介绍了如何使用Google Earth Engine(GEE)进行干旱监测,重点通过计算植被状况指数(VCI)来分析MODIS NDVI数据。首先,定义感兴趣区域(ROI)并加载MODIS NDVI影像集合。接着,计算NDVI的最小值和最大值,并基于这些值计算VCI。通过VCI中位数进行干旱映射,并绘制直方图以理解数据分布。随后,根据VCI值将干旱情况分类,生成干旱地图,并扩展时间范围对每幅影像进行VCI分类。最后,导出VCI图像到Google Drive,并计算干旱面积以绘制分类图表。该方法为干旱监测

2025-05-23 15:00:00 14

原创 GEE训教程:使用 Google Earth Engine 分析降水量时间序列与变化图表

首先,我们需要定义我们的研究区域(ROI)。在本示例中,我们将使用一个名为的矢量文件,并通过dt_code进行过滤。

2025-05-23 14:48:05 12

原创 LBA-ECO CD-04 土壤湿度数据,巴西塔帕若斯国家森林 83 公里塔址

本数据集报告了巴西帕拉州塔帕若斯国家森林内 83 号塔台(伐木林地)两座塔台附近 10 米深度土壤湿度和降水量的连续高分辨率频域反射测量数据。测量时间为 2002 年和 2003 年。土壤湿度和降水量数据以逗号分隔的 ASCII 文件形式提供。第一座测井塔于 2000 年 6 月在该地点一片完整的森林区域安装(“完整”测井塔),并配备了涡流通量和微气象测量仪器,并在该地区任何伐木活动开始前 15 个月投入运行(Goulden 等人,2004 年;Miller 等人,2004 年;

2025-05-23 14:43:12 553

原创 GEE APP——预测全球城市扩张对气候变化情景下的环境评估(不同的 SSP 情景下),城市扩张交互式应用

预测全球城市扩张对气候变化情景下的环境评估至关重要。然而,由于数据和计算能力的限制,现有的全球未来城市用地产品通常分辨率较低(1 公里)。这阻碍了在更精细的尺度上对全球城市发展的影响进行准确评估。因此,我们在谷歌地球引擎(GEE-CA)中开发了第一个用于模拟未来全球城市扩张的细胞自动机(CA)在线工具,它可以在不同的 SSP 情景下,以 30 米的分辨率模拟未来城市土地的变化。GEE-CA 可通过分区并行策略对未来城市用地进行高分辨率无缝模拟。

2025-05-23 08:00:00 96

原创 GEE案例:基于MODIS火灾数据,并结合气候和地形变量等多源遥感数据,评估火灾对生态环境的影响并导出矢量数据

一项全球性研究分析了过去10年影响野火分布的因素,使用Google Earth Engine(GEE)获取数据,并通过Python进行分析。研究提出了两种从多光谱卫星图像中提取野火信息的方法,旨在理解全球野火分布的驱动因素。第一种方法通过应用掩码直接提取感兴趣区域的数据,而第二种方法使用六边形瓦片提取特定区域的烧毁像素,提供了更高的灵活性和分类准确性。研究利用GEE创建了包含所有因素的图像,并通过随机森林、自适应增强等机器学习工具对烧毁和未烧毁区域进行点采样分析。研究提取了地形、气候变量(如风速、温度、降水

2025-05-23 05:30:00 23

原创 基于多源遥感和多种机器学习分类器方法(决策树、K最近邻分类、高斯朴素贝叶斯、XGBoost、LightGBM和CatBoost)分析了冰山洪水风险指标

本文介绍了如何使用多种机器学习分类器分析锡金地区的洪水风险。首先,通过数据预处理步骤,包括特征选择、缺失值处理、交互项添加、对数变换、SMOTE处理不平衡数据以及特征归一化,准备好数据集。接着,将数据集划分为训练集和测试集,并定义了包括逻辑回归、随机森林、XGBoost等在内的多个分类器。通过训练和评估这些分类器,计算了准确率、精确率、召回率和F1分数等评估指标,并将结果保存到Excel文件中。最终,本文展示了不同分类器在洪水风险预测中的表现,为后续分析提供了数据支持。

2025-05-22 23:30:00 1452

原创 GEE 训练教程——根据海拔高度阈值制作简单的二进制图层(根据指定的距离度量,返回与输入值中最近的非零值像素的距离。)

根据海拔高度阈值制作简单的二进制图层。

2025-05-22 16:34:21 25

原创 LBA-ECO CD-04 叶片的光合作用和呼吸作用,塔帕若斯国家森林:2000-2006

本数据集报告了以下测量结果:(1) 叶片光合作用响应曲线,该曲线反映了温度、叶龄、变暖、辐射和昼夜节律的影响;(2) 叶片在 30 和 37 摄氏度下的光呼吸速率。测量于 2000 年 6 月至 2006 年 2 月期间在巴西帕拉州塔帕若斯国家森林的 83 公里伐木森林塔、67 公里原始森林塔和塞卡弗洛雷斯塔的对照点进行。该数据集包含 7 个逗号分隔的 ASCII 数据文件。

2025-05-22 16:30:24 848

原创 GEE聚类分析:基于sentinel-2 影像进行 K-Means 聚类分析

这篇博客介绍了如何使用 Google Earth Engine (GEE) 进行 K-Means 聚类分析,以识别感兴趣区域(ROI)内的不同地表覆盖类型。文章详细说明了从定义用户参数、准备参考区域、加载和预处理 Sentinel-2 图像,到训练 K-Means 聚类器并对图像进行聚类的完整流程。代码示例展示了如何设置参数、采样像素数据、训练聚类器,并将结果可视化。最后,还提供了将聚类结果导出到 Google Drive 的选项。通过该教程,用户可以掌握在 GEE 平台上进行地理数据聚类分析的基本方法。

2025-05-22 10:00:00 24

原创 GEE训练教程:基于Landsat的岩石指数RI的计算和下载分析

岩石指数(Rock Index)是一种基于遥感数据的定量指标,用于评估地表岩石的分布和特征。它通过分析遥感影像中的光谱信息,提取与岩石相关的特征,帮助识别和分类岩石类型。常用的计算方法包括归一化差异岩石指数(NDRI)和岩石指数(RI),分别通过近红外与短波红外波段的差异或多个波段的光谱信息来增强岩石特征。岩石指数在地质勘探、环境监测和灾害评估中有广泛应用,能够快速、大面积地获取地表岩石信息,减少野外调查工作量。然而,其精度受遥感数据质量、大气条件和地表覆盖等因素影响,需结合实地数据进行验证。通过Googl

2025-05-21 23:46:51 18

原创 LBA-ECO CD-04 LAI 根据照片估算,塔帕若斯国家森林 83 公里塔楼遗址

该数据集包含巴西帕拉州塔帕若斯国家森林 83 公里塔楼站月度叶面积指数 (LAI) 和植物面积指数 (PAI) 的汇总数据。LAI 是根据 2000 年至 2003 年间收集的叶片半球形照片,使用直方图和间隙分数分析法估算得出的。该数据集包含两个数据文件:一个以逗号分隔的 ASCII 数据文件,其中包含每月的 LAI 和 PAI 汇总数据;另一个压缩文件 (*.zip),其中包含 2000-2001 年的半球形照片图像 (.bmp)。这些图像包括在测井前和测井后在测量地点拍摄的,用于比较 LAI。

2025-05-21 23:42:56 632

原创 GEE训练教程:使用Google Earth Engine下载和可视化了指定国家1981年至2022年的降雨量数据

本文介绍了如何使用Google Earth Engine下载和可视化1981年至2022年的降雨量数据。首先,通过定义伊朗的国家边界图层,并在该区域内随机生成7个点。接着,加载NASA的GDDP CMIP6数据集,筛选特定模型和情景的降雨量数据,并设置可视化参数以展示降雨量变化。随后,通过遍历每一年和每个月,计算每月的降雨总和,并生成每月影像集合。最后,对研究区域进行区域统计,计算每个点的平均降雨量,并将结果导出为CSV文件到Google Drive。该方法为气候研究提供了强大的工具,帮助更好地理解气候变化

2025-05-21 19:30:00 17

原创 Google Earth Engine :基于sentinel-2数据计算NDWI并进行不同时间段的冰川湖及其环境特征分析

本文介绍了如何使用 Google Earth Engine (GEE) 分析锡金地区的冰川湖及其环境特征。通过定义锡金地区边界、应用云掩膜处理 Sentinel-2 数据、计算归一化差异水体指数 (NDWI) 提取水体,并结合历史冰川湖数据、海拔、坡度及历史洪水范围,深入分析了该地区的水体变化及其影响。最终,提取的数据被导出为 CSV 文件,并生成了当前冰川湖的地图,为未来的研究和决策提供了重要数据支持。

2025-05-21 17:30:00 21

原创 GEE训练教程:基于sentinel-2影像计算NDWI的探测冰川水体和而可视化分析

本文介绍了如何利用 Google Earth Engine (GEE) 分析锡金地区的冰川湖及其环境特征。通过定义锡金地区的边界、应用云掩膜处理 Sentinel-2 数据、计算归一化差异水体指数 (NDWI)、提取水体、添加海拔、坡度和土地覆盖数据,并结合历史冰川湖数据,我们生成了一个综合数据集。最终,该数据集被导出以便进一步分析。这些步骤为理解锡金地区的水体变化及其环境影响提供了重要数据支持,并为未来研究和决策奠定了基础。

2025-05-21 15:30:00 19

原创 GEE教程:多源遥感特征提取-环境特征括海拔、坡度、NDWI(归一化差异水体指数)、土地覆盖、冰川接近度以及历史洪水发生情况

本文介绍了如何使用 Google Earth Engine (GEE) 分析印度锡金地区的环境特征。通过定义感兴趣区域,获取并处理海拔、坡度、NDWI(归一化差异水体指数)、土地覆盖、冰川接近度以及历史洪水发生等数据,我们能够全面了解该地区的地理特征和水资源状况。文章详细展示了从数据获取、处理到可视化的完整流程,并最终将数据导出为 CSV 文件,为后续的机器学习模型提供支持。这一分析不仅有助于环境研究,也为该地区的灾害风险评估提供了重要数据基础。

2025-05-21 09:45:00 23

原创 GEE图表:使用 Google Earth Engine (GEE) 来监测指定地区的二氧化氮(NO₂)月度浓度趋势

本博客介绍了如何使用 Google Earth Engine (GEE) 监测印度乌代布尔地区的二氧化氮(NO₂)月度浓度趋势。首先,通过定义感兴趣区域(AOI)并加载乌代布尔的边界数据。接着,创建月份名称列表和年份范围(2019-2024),并编写函数计算每个月的 NO₂ 平均值。该函数通过过滤遥感数据、计算月均浓度,并将结果转换为 µg/m³ 单位。最后,使用 GEE 的图表功能生成 NO₂ 月度趋势图,帮助分析空气质量变化。这种方法为环境监测和政策制定提供了有力支持。

2025-05-21 08:00:00 233

原创 GEE训练教程:基于兴趣点poi的超大规模土地利用建模框架

基于兴趣点的超大规模土地利用建模框架基于兴趣点的土地利用建模框架是一种通过利用兴趣点(POI)数据来表征不同空间尺度和语义粒度的土地利用模式的方法。该方法由橡树岭国家实验室的研究人员开发,使用神经网络语言模型将兴趣区域(AOI)转换为高维嵌入。该框架将兴趣点(POI)的空间分布和语义属性集成到 AOI 中,以捕捉其土地利用特征。通过将兴趣点与道路网络层次结构相结合,并结合基于 OSM 标签的语义表示,这种方法为跨不同地理环境的大规模土地利用建模提供了一种可扩展的解决方案。框架组件数据集详情。

2025-05-20 22:21:52 20

原创 LBA-ECO CD-04 叶面积指数,83 公里塔楼站点,塔帕若斯国家森林,巴西

叶面积指数是在巴西帕拉州塔帕若斯国家森林 83 公里处的伐木塔点的一块 18 公顷地块中估算的。该地块毗邻位于巴西帕拉州塔帕若斯国家森林 83 公里处的涡流通量塔。在这块 18 公顷地块中,沿着两条东西向横断面,以 25 米的间隔放置了 30 个枯枝落叶收集器。每两周从收集器中收集枯枝落叶样本,并送回实验室进行分类、风干和称重。使用计算机扫描仪和图像处理软件测定风干叶片子样本的叶面积。然后将子样本放入烤箱烘干,并将风干重量校正为烘干重量。

2025-05-20 22:16:21 807

原创 GEE土地分类:Google Earth Engine 进行非监督土地覆盖分类(k-means,、CascadeKMeans、wekaLVQ和wekaXMeans聚类分析)和 时序的NDVI 分析

本文介绍了四种聚类算法(K-Means、CascadeKMeans、WekaLVQ 和 WekaXMeans)的原理、优缺点及适用场景,并通过 Google Earth Engine 平台展示了这些算法在土地覆盖分类和 NDVI 分析中的应用。K-Means 适合处理简单且均匀分布的数据,CascadeKMeans 通过分层聚类提高大规模数据处理的效率,WekaLVQ 适合非线性可分数据,WekaXMeans 则自动选择最佳簇数量,适合复杂数据集。文章还详细描述了如何使用 GEE 加载气候数据、训练模型、进

2025-05-20 08:30:00 250

原创 GEE 案例:计算黄河流域内土壤湿度和降水量的异常情况

本文介绍了如何使用Google Earth Engine (GEE)分析土壤湿度和降水量的异常情况,以识别干旱事件。主要步骤包括:导入流域边界和关键数据集(NASA-USDA Enhanced SMAP土壤湿度数据集和GPM IMERG月度降水数据集),定义研究时间段,处理数据(如单位转换和异常值计算),并绘制异常值时间序列图。通过计算土壤湿度和降水量与多年平均值的偏差,可以在地面数据有限的地区进行水文状况分析,识别持续的负异常时期,这些时期通常与干旱事件相关。

2025-05-20 08:00:00 387

原创 Google Earth Engine :分析锡金地区的多个地理特征,包括海拔、冰川湖、历史性洪水、冰川、土地覆盖和坡度

本文介绍了如何使用 Google Earth Engine (GEE) 分析印度锡金地区的地理特征。首先,通过 GEE 的功能集合定义了锡金的地理边界,并设置了地图中心。接着,利用 SRTM 数字高程模型获取并可视化了该地区的海拔数据。随后,使用 Sentinel-2 卫星影像和归一化差异水体指数 (NDWI) 检测了冰川湖,并通过全球河流流量数据集分析了历史性洪水。此外,还利用 RGI 数据集获取了冰川信息,并通过 ESA 世界覆盖 2020 数据集分析了土地覆盖情况。最后,计算并可视化了锡金地区的坡度。

2025-05-20 07:00:00 22

原创 GEE训练教程:Google Earth Engine 进行城市热岛效应分析(地表温度分析),分屏展示不同时间的地表温度

本文介绍了如何使用 Google Earth Engine (GEE) 分析城市热岛效应 (UHI)。首先,定义感兴趣区域(如西班牙),并通过云掩膜函数提高影像质量。接着,加载 Landsat 数据,计算地表温度 (LST) 和归一化水体指数 (NDWI),并进一步计算发射率和热波段。通过表达式计算 LST,并可视化结果。最后,计算城市热岛效应 (UHI),并比较不同年份(如2015年和2024年)的数据。该方法能够有效分析城市热岛效应的时空变化,为城市规划提供科学依据。

2025-05-20 04:00:00 141

原创 GEE 训练教程——将矢量几何图形转换为图像

将矢量几何图形转换为图像。

2025-05-19 13:32:18 46

原创 LBA-ECO CD-04 树木测量学,巴西塔帕若斯国家森林 83 公里塔楼遗址

在实施减少影响的伐木管理制度后的四年里,在巴西帕拉州塔帕若斯国家森林 km83 处的伐木森林塔点进行了一项树木测量学研究。安装了树木测量带,以测量 km83 处涡流通量塔附近 18 公顷地块中 234 棵树的直径生长增量。除了伐木前在地块内随机选择进行测量的树木外,2002 年还在研究中加入了一组在伐木处理过程中留下的林隙内或附近的小直径树木。选择性伐木是亚马逊河流域的主要土地利用方式。要准确核算伐木对区域碳平衡的影响,需要更多关于伐木森林恢复生物量的速率的信息。此数据集有一个逗号分隔的数据文件。

2025-05-19 13:27:52 999

原创 GEE APP——生成多模态时间序列数据集(MMTS-GEE 旨在高效生成用于多模态和多时序分析或各种机器学习任务的综合数据集)

MMTS-GEE 是一个基于 Google Earth Engine (GEE) 的工具,用于生成多模态时间序列数据集,结合了 Sentinel-1 SAR 数据、Sentinel-2 多光谱数据、ERA5-Land 气候变量和 Copernicus DEM 地形特征。该工具通过集成多种遥感数据,支持森林监测、土地覆盖分析和生物物理参数提取。用户可以通过自定义时间范围、土地覆盖类型、随机点生成等设置,灵活生成符合研究需求的数据集。代码提供了数据预处理、植被指数计算、斑点滤波等功能,并支持将结果导出为 CSV

2025-05-19 09:00:00 118

原创 GEE案例:基于Google Earth Engine的RUSLE土壤侵蚀模型实现与分析(恒河缓冲区)

加载各种输入数据(降水、土壤、地形、植被等)计算RUSLE的五个因子(R、K、LS、C、P)综合计算土壤流失量对结果进行分类和可视化导出计算结果和添加图例RUSLE模型公式为:A = R × K × LS × C × PA: 土壤流失量(t/ha/yr)R: 降雨侵蚀力因子K: 土壤可蚀性因子LS: 地形因子(坡长和坡度)C: 植被覆盖因子P: 水土保持措施因子该代码适用于评估特定区域的土壤侵蚀风险,可用于土地管理和水土保持规划。## 结果!

2025-05-19 08:00:00 354

原创 GEE案例——利用基于高程、坡度、土地利用、降雨量和水体分布等数据进行洪水风险评估(洪水风险指数)

本文介绍了如何利用 Google Earth Engine (GEE) 进行洪水风险评估。通过整合高程、坡度、土地利用、降雨量和水体分布等数据,构建了一个洪水风险指数模型。具体步骤包括:定义感兴趣区域(AOI)、获取高程和坡度信息、获取土地利用数据、计算降雨量、计算距离水体的距离、归一化各图层数据,并最终加权叠加生成洪水风险指数。此外,还添加了图例和标题以增强地图的可读性。该模型为洪水风险评估提供了有效工具,支持相关决策制定。

2025-05-18 16:30:00 23

原创 GEE APP——一种基于遥感技术的实际蒸散量制图的多模型方法 (ETMapper-GEE)

Google Earth Engine (ETMapper-GEE) 是一种基于遥感技术的多模型方法,用于精确估算实际蒸散量(ETa),这对于大规模水资源管理至关重要。该工具利用 Landsat 卫星数据,结合四种模型(SEBAL、METRIC、TriAng 和 SSEBop)进行遥感蒸散量估算,并整合了外推方法和气候强迫数据集。在德国通量塔观测数据上的评估显示,EF 方法优于 ETF 方法,TriAng 模型表现最佳。使用 ETo 和 ERA5 强制数据显著提高了估算精度。ETMapper-GEE 提供了

2025-05-18 16:00:00 22

原创 GEE训练教程——测量矢量几何体的距离并生成图像

GEE训练教程——测量矢量几何体的距离并生成图像。

2025-05-18 09:24:27 22

原创 LBA-ECO CD-04 二氧化碳剖面图,塔帕若斯国家森林 83 公里塔址

在巴西帕拉州圣塔伦市塔帕若斯国家森林,83公里长的伐木塔点,测量了高达64米,12个高度的大气二氧化碳浓度剖面。数据收集于2000年6月至2004年3月的三年半期间。红外气体分析仪每48分钟连续测量一次塔上12个高度(距地面0.1、0.35、0.7、1.4、3、6、10.7、20、35、40、50、64米)的二氧化碳浓度。数据以30分钟为间隔报告,并保存在一个逗号分隔的文件中。

2025-05-18 09:18:11 567

原创 GEE 土地分类:向样本添加时间序列属性以加快加载速度

向样本添加时间序列属性以加快加载速度。该脚本提取集合中点的时间序列,使用reduceRegion函数。如果用于创建参考时间序列或中断收集器工具GLANCE,输入特征集合必须有一个唯一的标识符 点,在名为“id”的属性中(区分大小写)

2025-05-18 08:00:00 139

原创 GEE教程:基于MCD64A1数据提取BAI值并导出为CSV文件(之提取至点)

接下来,我们定义一个函数addBAI// 获取年份// 获取前一年// 定义前一年开始日期// 定义当前年份结束日期// 创建一个点几何对象var baiCollection = ee.ImageCollection('MODIS/006/MCD64A1') // 加载MODIS的烧毁日期数据集.filterDate(start, end) // 根据定义的时间范围过滤数据// 选择“BurnDate”波段。

2025-05-17 17:54:36 16 1

原创 LBA-ECO CD-03 通量气象数据,巴西帕拉县 77 公里牧场:2000-2005 年

涡流相关和微气象测量始于 2001 年并持续到 2005 年,测量地点位于巴西帕拉州圣塔伦市南部 BR-163 公路 77 公里处的牧场。测量包括使用涡流协方差 (EC) 方法测量的湍流通量(动量、热量、水蒸气和二氧化碳)。其他测量包括二氧化碳廓线、气温、湿度、风速廓线、向下和向上的太阳和地面辐射、向下和向上的光合有效辐射 (PAR)、大气压力、降雨量、土壤温度、土壤湿度和土壤热通量。数据以 5 个逗号分隔的 ASCII 值 (csv) 文件呈现,每个文件大致对应一个日历年。

2025-05-17 17:49:55 900

Multispectral_Functions_Examples.ipynb

RadGEEToolbox 是一个开源 Python 包,它简化了使用 Google Earth Engine Python API 对卫星图像进行处理和分析。它提供了用于过滤、掩膜、镶嵌、光谱指数计算以及从多光谱(Landsat、Sentinel-2)和 SAR(Sentinel-1)数据集中提取统计数据的现成工具。RadGEEToolbox 专为 Google Earth Engine 的新手和高级用户设计,它最大限度地减少了重复脚本编写,加速了常见的遥感工作流程,并旨在在 Google Earth Engine API 的限制内最大化效率。无论是构建植被指数的时间序列还是沿样线提取地表属性,这个包都有助于更快地获得结果。Streamlined Multispectral & SAR Analysis for Google Earth Engine Python API

2025-05-24

【地理信息系统】基于Python的GEE遥感影像处理脚本:集合拼接与可视化参数获取功能实现

内容概要:本文档是gee scripts.txt,主要提供了多个类和方法用于处理和操作来自不同卫星的数据集合。其中包括CollectionStitch类及其MosaicByDate方法,可以对图像集合进行拼接处理;GetPalette模块的get_palette函数能获取调色板;LandsatCollection类针对Landsat卫星数据集合的操作;Sentinel1Collection类和Sentinel2Collection类则分别用于处理Sentinel-1和Sentinel-2卫星的数据集合;VisParams模块的get_visualization_params函数提供获取可视化参数的功能。; 适合人群:遥感技术从业者、地理信息系统研究者以及对卫星数据处理有兴趣的研究人员或开发者。; 使用场景及目标:①需要对多时相或者多源卫星影像数据进行拼接、融合处理;②想要获取适用于特定卫星数据的调色板,以便更好地展示图像信息;③寻求有效的API来获取Landsat、Sentinel系列卫星数据集合;④希望得到合适的参数设置来进行卫星影像的可视化展示。; 阅读建议:由于涉及到的具体技术细节较多,在阅读时建议先熟悉Google Earth Engine平台的基础知识,同时可以参考官方文档或其他相关资料加深理解。对于每个类和方法的具体用法,可以通过查阅Python编程语言的相关教程辅助学习。

2025-05-24

【遥感影像处理】基于Python的Earth Engine图像可视化参数设置:卫星影像多光谱指数显示配置系统设计

内容概要:本文档提供了一个Python函数`get_visualization_params`的定义与实现,用于定义图像可视化参数并输出为vis_params字典。该函数接受卫星名称(如Landsat或Sentinel2)、多光谱指数(如TrueColor、NDVI等)以及可选的最小值、最大值和调色板作为参数。函数内部根据不同卫星类型设定了多种图像类型的默认可视化参数,包括波段、颜色范围和调色板选择。特别地,对于特定指数如LST和KIVU,仅适用于Landsat,而2BDA则仅限于Sentinel2。此外,还支持用户自定义最小值、最大值和调色板来覆盖默认设置。如果提供的卫星或指数不正确,则会抛出异常; 适用人群:从事遥感数据处理、地理信息系统(GIS)开发的技术人员,尤其是对Landsat和Sentinel2卫星图像处理感兴趣的开发者; 使用场景及目标:①为Landsat和Sentinel2卫星图像的不同多光谱指数创建合适的可视化参数;②允许用户根据具体需求调整图像显示效果,如通过指定最小值、最大值和调色板; 其他说明:在实际应用中,用户需要确保所使用的调色板是预定义列表中的一种,并且要注意某些指数只适用于特定类型的卫星。此外,当调用此函数时,应该检查输入参数的有效性以避免运行时错误。

2025-05-24

【遥感与地理信息系统】基于Google Earth Engine的Sentinel-2影像处理工具:多光谱指数计算与图像过滤系统设计处理ESA Sentinel-2

内容概要:本文档详细介绍了 Python 类 `Sentinel2Collection`,该类用于处理来自 Google Earth Engine (GEE) 的 ESA Sentinel-2 MSI 表面反射率卫星图像。它支持多种空间和时间过滤器,提供缓存以提高计算效率,并能直接计算关键光谱指数(如 NDWI、NDVI、卤水指数等)。此外,还提供了云掩模、影像镶嵌、区域统计和断面分析等功能。文档还包含类的初始化参数说明、属性和方法的具体用法示例。 适合人群:具备一定遥感数据处理和 Python 编程基础的研究人员或工程师,特别是对 Sentinel-2 数据处理有需求的用户。 使用场景及目标:① 对 Sentinel-2 图像进行时空过滤、云掩模和镶嵌处理;② 计算多种光谱指数(如 NDWI、NDVI 等);③ 进行区域统计分析和断面提取;④ 实现基于多边形的影像裁剪和掩模操作;⑤ 提取特定日期或索引位置的图像。 阅读建议:此资源不仅提供了代码实现,还涵盖了 Sentinel-2 数据处理的需求分析和方案设计。因此,在学习过程中应结合实际应用需求,逐步实践并调试代码,以便更好地理解和掌握 Sentinel-2 数据处理技术。

2025-05-24

【遥感与地理信息系统】基于Google Earth Engine的Sentinel-1 SAR数据处理类:Python中实现多时相雷达影像的过滤、镶嵌、统计分析及去斑处理

内容概要:文档详细介绍了 Python 类 `Sentinel1Collection`,该类用于处理来自 Google Earth Engine (GEE) 的 ESA Sentinel-1 C 波段合成孔径雷达(SAR)GRD 数据。该类支持多种空间和时间过滤器,多视图和斑点滤波,缓存计算,以及直接转换对数和线性后向散射尺度。此外,它还提供了镶嵌、区域统计和断面分析等功能。类初始化时可以通过提供过滤参数或直接传递预过滤的 GEE 集合来完成。文档还包括了详细的属性、方法和示例代码,如创建对象、获取图像、计算区域统计等。 适合人群:具备一定编程基础,特别是熟悉 Python 和遥感数据分析的研究人员或工程师。 使用场景及目标:① 从 Sentinel-1 数据集中筛选特定日期、轨道方向、极化方式等条件的影像;② 对影像进行多视图处理、斑点滤波、镶嵌等操作;③ 计算影像的统计信息(如均值、中位数等),并进行断面分析和区域统计。 其他说明:文档提供了丰富的代码示例和详细的参数说明,帮助用户更好地理解和应用 `Sentinel1Collection` 类。用户可以参考 GitHub 上的完整使用示例和笔记本,以进一步探索类的功能。此外,文档还强调了类的高效性和灵活性,适用于大规模遥感数据处理任务。

2025-05-24

【遥感与地理信息系统】基于Google Earth Engine的多光谱Landsat影像处理工具集:支持多时相滤波、云掩膜及光谱指数计算等应用

内容概要:本文档提供了gee scripts.txt的详细解析,重点介绍了一个名为LandsatCollection的Python类,用于处理来自Google Earth Engine(GEE)的Landsat 5、8和9卫星图像数据。该类支持多种空间和时间过滤器,包括按日期范围、WRS-2瓦片行和路径、云覆盖百分比、边界几何形状以及预过滤的GEE集合进行筛选。它还实现了多种光谱指数计算(如NDWI、NDVI、卤水指数等)、云层掩膜、镶嵌、区域统计和剖面分析等功能。此外,提供了对影像集的中值、平均值、最大值和最小值等统计属性的访问方法。; 适合人群:具备一定遥感数据分析基础,特别是对Google Earth Engine平台有一定了解的研究人员和工程师。; 使用场景及目标:①需要处理和分析Landsat系列卫星影像的研究人员;②希望通过编程方式批量处理和分析遥感数据的工程师;③研究特定时间段内某一地区环境变化情况的科学家;④需要提取特定光谱指数或进行云层、水域等特征提取的专业人士。; 其他说明:为了更好地理解和应用此工具,建议使用者熟悉Google Earth Engine API的基础操作,并了解常用的空间分析方法和光谱指数计算原理。同时,文档中提供了详细的示例代码和函数说明,帮助用户快速上手并应用于实际项目中。

2025-05-24

【地理信息系统】GEE图像可视化配色方案函数设计:提供多种颜色主题用于地球引擎影像显示参数配置

内容概要:本文档提供了一个Python函数`get_palette(name)`的定义与说明,该函数用于返回与给定名称关联的颜色调色板列表,这些颜色列表可以在Google Earth Engine(GEE)的可视化参数中用于图像可视化。函数接收一个字符串参数name,表示调色板的名字,如'algae'、'dense'、'greens'等十二种预定义选项,每种调色板由一组十六进制颜色代码组成的列表表示。如果提供的调色板名称不在预定义选项中,则返回None。; 适合人群:对Google Earth Engine感兴趣,尤其是需要进行遥感影像可视化处理的科研人员、地理信息系统开发者或数据分析师。; 使用场景及目标:①为遥感影像选择合适的颜色调色板以增强视觉效果;②根据具体应用场景的需求,挑选最能表达数据特征的颜色序列;③利用调色板提高图像对比度和可解释性。; 阅读建议:读者可以根据自己的需求选择合适的调色板,并尝试将不同的调色板应用到实际的GEE项目中,观察不同调色板对图像显示效果的影响。同时,对于想要深入了解调色板背后色彩理论的人,可以进一步研究每个颜色值的含义及其在特定场景下的表现。

2025-05-24

【遥感影像处理】基于Google Earth Engine的影像集合拼接与按日期马赛克处理:影像数据融合与处理方法实现

内容概要:本文档提供了两个用于处理地球引擎(Earth Engine)图像集合的Python函数:CollectionStitch和MosaicByDate。CollectionStitch函数用于将两个具有相同日期的RadGEETools图像集合对象进行镶嵌,仅当两个集合在同一日期都有图像时才形成镶嵌图。返回的是一个ee.ImageCollection对象,其中包含镶嵌后的图像以及从选定集合复制的图像属性。MosaicByDate函数则针对具有“Date_Filter”属性的图像集合,对同一日期的图像进行镶嵌,并将结果累积到一个新的图像集合中。两个函数都强调了服务端友好的特性,确保高效处理大规模数据。 适合人群:熟悉Python编程语言并有一定地球观测数据分析经验的研究人员或开发者,尤其是那些需要处理和分析卫星图像数据的专业人士。 使用场景及目标:①需要将来自不同传感器但时间戳相同的多张遥感影像进行无缝拼接,以获得更大范围的连续观测数据;②希望基于特定日期筛选并合并多个时间点上的遥感影像,以便于后续的时间序列分析或其他高级应用。 其他说明:由于涉及地球引擎平台特有的API调用,使用者需先安装并配置Google Earth Engine Python API库(geemap或ee),并且了解基本的地理信息系统概念如图像集合、过滤器等。此外,文中提到的RadGEETools类并未给出详细定义,在实际使用时可能需要参考相关文档或源码来理解其具体行为。

2025-05-24

【遥感影像处理】基于Google Earth Engine的Landsat 8与Sentinel-2云掩膜及可视化:影像集合处理与导出系统设计文档的主要内容

内容概要:本文详细介绍了如何利用Google Earth Engine(GEE)平台对Landsat 8和Sentinel-2卫星影像进行云层遮挡去除、数据预处理以及可视化操作。首先定义了研究区域(AOI),然后分别针对两种卫星影像集合应用了特定的云掩膜函数,确保获取到高质量的表面反射率数据。对于Landsat 8,使用了QA_PIXEL和QA_RADSAT波段来检测并排除云、云影及饱和像素;而对于Sentinel-2,则基于QA60波段识别并剔除云和卷云。接下来,通过时间过滤、空间裁剪等步骤筛选出符合要求的数据集,并创建了中值合成图像以减少天气变化的影响。最后,将处理后的影像可视化展示在地图上,并提供了导出至Google Drive的方法。 适合人群:对遥感影像处理有一定了解的研究人员或工程师,特别是那些需要处理Landsat 8和Sentinel-2卫星数据的人士。 使用场景及目标:①学习如何在GEE平台上高效地处理和分析来自不同卫星传感器的光学影像;②掌握云掩膜技术,提高遥感数据分析的准确性;③了解如何利用中值合成方法改善长时间序列影像的质量;④熟悉GEE提供的各种工具和服务,如影像集合操作、可视化设置以及数据导出功能。 阅读建议:由于涉及到具体的编程语句和技术细节,在阅读时应结合实际案例进行练习,同时可以参考官方API文档加深理解。此外,建议读者先熟悉GEE的基本概念和操作流程,以便更好地理解和应用本文所介绍的技术。

2025-05-24

【地球引擎遥感】Landsat 8云掩膜与影像合成:基于Google Earth Engine的云去除及可视化处理脚本

内容概要:本文档详细介绍了如何使用Google Earth Engine (GEE) 处理和分析Landsat 8卫星图像数据。首先定义了一个研究区域(AOI),接着展示了如何加载Landsat 8 Collection 2 Level 2的地表反射率数据集,并通过自定义函数maskL8sr对云层和饱和像素进行掩膜处理。该函数利用了QA_PIXEL和QA_RADSAT波段来确保数据质量。然后,通过对图像集合应用时间过滤、空间范围过滤以及云掩膜操作,获取到所需时间段内的高质量图像集合。为了减少天气变化的影响,还创建了中值合成图像。最后,文档提供了如何将处理后的图像可视化显示在地图上,并导出至Google Drive的方法。; 适合人群:对遥感数据分析感兴趣的研究人员、地理信息系统(GIS)专业学生或从业者,尤其是那些希望利用GEE平台处理Landsat卫星数据的人士。; 使用场景及目标:①学习如何在GEE平台上定义研究区域并加载特定类型的卫星影像;②掌握去除云层干扰和处理异常值的技术,提高遥感数据的质量;③了解如何创建统计合成图像以应对复杂天气条件;④学会将处理结果可视化并在GEE环境中保存或分享。; 阅读建议:建议读者具备基本的JavaScript编程能力以及对遥感概念有一定了解,以便更好地理解和实践文中提供的代码示例。同时,在实际操作时注意根据自己的研究需求调整参数设置,如日期范围、波段选择等。

2025-05-24

地球引擎Sentinel-2地表反射率影像云层掩膜与可视化和下载RGB:基于GEE脚本的遥感图像处理与分析系统设计

内容概要:本文档详细介绍了如何利用Google Earth Engine(GEE)处理和可视化Sentinel-2表面反射率数据。首先定义了一个用于屏蔽云层的函数maskS2clouds,该函数通过检查图像的QA60波段来识别并移除云层和卷云像素。接着加载并筛选了指定日期范围内的Sentinel-2 SR Harmonized影像集合,确保影像覆盖区域不超过20%的云量,并应用云层屏蔽函数。然后创建了影像集合的中值合成图,以便减少云层干扰。最后展示了影像在地图上的可视化效果,并提供了将处理后的影像导出到Google Drive的方法。 适合人群:对遥感数据分析感兴趣的研究人员或开发者,尤其是那些需要处理Sentinel-2卫星数据的人群。 使用场景及目标:①学习如何使用GEE平台处理和分析Sentinel-2卫星数据;②掌握云层屏蔽技术以提高影像质量;③了解如何创建中值合成图来减少云层对数据的影响;④掌握将处理结果导出至Google Drive的技术细节。 阅读建议:读者应具备基本的遥感知识和JavaScript编程经验,建议结合实际案例进行练习,重点关注云层屏蔽方法的应用以及影像合成与可视化的实现过程。

2025-05-24

【地球观测与遥感技术】基于Sentinel-2影像的地形校正与燃烧严重程度分析:快速研究区域的NDVI和燃烧比率计算

内容概要:本文档提供了一段用于计算归一化植被指数(NDVI)、燃烧比率(NBR)以及燃烧严重程度(如dNBR、RBR、RdNBR)的Google Earth Engine脚本。该脚本主要利用了Sentinel-2卫星影像数据,并结合地形校正方法(如坡度和坡向校正),确保影像数据的质量。文档首先介绍了研究区域(Alder Creek流域和Wapiti火灾区域)的边界和火情数据的获取与可视化,随后详细描述了影像的筛选、拼接、裁剪和地形校正过程。接着,通过计算NDVI、NBR等指标来评估植被覆盖变化和火灾影响,并进一步计算了dNBR、RBR和RdNBR以量化烧伤程度。最后,文档展示了如何将处理后的影像导出到Google Drive。 适合人群:具有遥感数据分析基础的研究人员或学生,特别是对火灾影响评估感兴趣的用户。 使用场景及目标:①评估火灾前后植被覆盖的变化;②量化不同区域的火灾严重程度;③通过地形校正提高影像质量,从而更准确地分析火灾影响。 其他说明:此脚本适用于Google Earth Engine平台,用户需要具备一定的JavaScript编程能力。此外,脚本中包含了详细的注释,帮助用户理解每一步操作的目的和方法。建议用户在实际应用时根据具体需求调整参数设置,并参考提供的参考资料进行更深入的学习。

2025-05-24

【地球科学与遥感】基于Google Earth Engine的Landsat 7影像分析:佩ayette流域扫描线校正及地表分类系统构建

内容概要:本文档详细描述了使用Google Earth Engine (GEE) 分析1983年至2023年期间Landsat 7卫星图像的工作流程,特别针对Payette流域进行扫描线校正(SLC)。首先设置地图中心和显示选项,加载研究区域边界、水体和烧毁区域的形状文件。接着筛选并处理Landsat 7影像,包括选择光谱波段、过滤云覆盖、应用质量保证位掩码、裁剪到研究区域、生成高程模型及其派生数据(坡度和坡向)。然后创建水体和火灾区域的掩膜,并应用这些掩膜去除不需要的像素。为了减少雪的影响,还计算了雪覆盖指数(NDSI)并过滤掉雪较多的图像。之后,对选定的图像进行扫描线校正,利用线性回归方法填补图像中的数据缺失部分。最后,使用随机森林分类器对每一年的合成图像进行土地覆盖分类,并评估分类精度。 适合人群:具备遥感和地理信息系统基础知识的研究人员和技术人员,尤其是对Landsat数据处理和Google Earth Engine平台有一定了解的人群。 使用场景及目标:① 对Landsat 7数据进行预处理,包括去云、裁剪、地形校正等;② 执行扫描线校正以修复SLC故障引起的条带问题;③ 利用随机森林算法对多时相Landsat图像进行土地覆盖分类,并验证分类结果的准确性。 其他说明:该脚本不仅提供了详细的代码实现,还包括了对每个步骤的功能解释,便于用户理解和调整参数。此外,文中提到的“Nellie Juan Classifier”可以作为参考进一步理解代码逻辑。在实际操作中,可以根据具体需求调整日期范围、波段选择和其他处理参数。

2025-05-24

【遥感与地理信息系统】基于Google Earth Engine的Landsat 8影像处理与分类:流域内土地覆盖变化分析系统设计处理和分析

内容概要:本文档提供了对Payette流域Landsat 8影像数据进行处理和分类的完整流程。首先,代码通过Google Earth Engine平台获取并过滤了2012年至2023年间特定日期范围内的Landsat 8影像数据,确保云量不超过25%,并应用了质量保证位掩码来去除云和阴影影响的像素。接着,对影像进行了地形校正,包括计算坡度、方位角等参数,以及调整各波段的反射率值。随后,为每张影像添加了数字高程模型(DEM)、坡度和方位角信息,并创建了水体和火灾区域的掩膜。在此基础上,生成了归一化差异雪指数(NDSI)和归一化植被指数(NDVI),筛选出无雪覆盖的影像。最后,使用随机森林分类器对每年的影像进行了土地覆盖分类,生成了分类图,并计算了混淆矩阵以评估分类精度。 适合人群:具备遥感数据分析基础,熟悉Google Earth Engine平台,从事环境监测或地理信息系统相关工作的研究人员和技术人员。 使用场景及目标:①获取和预处理Landsat 8影像数据,去除云和阴影干扰;②进行地形校正,提高影像质量;③创建水体和火灾区域掩膜,排除干扰因素;④计算NDSI和NDVI,筛选无雪覆盖影像;⑤利用随机森林分类器对影像进行土地覆盖分类,并评估分类精度。 阅读建议:本文档代码量较大,建议读者先了解Google Earth Engine的基本操作和常用函数,重点掌握影像处理、分类和精度评估的方法。同时,可以根据自己的研究需求调整代码中的参数设置,如影像时间范围、分类类别等。

2025-05-24

【地理信息系统与遥感】基于Google Earth Engine的Landsat 5影像处理与分类:佩ayette流域土地覆盖变化分析及雪盖监测系统设计利用Google Earth Engine

内容概要:本文档提供了一段用于分析帕耶特流域(Payette Watershed)所有Landsat 5影像的Google Earth Engine脚本。该脚本基于Nellie Juan分类器进行了改进,增加了火烧区域的掩膜处理。首先设置研究区域和时间范围(1983年6月1日至2012年10月31日),并获取Landsat 5影像集合,通过QA位掩码过滤云层和阴影。接着将影像裁剪到研究区域内,添加地形数据(如高程、坡度、朝向),并创建水体和火烧区域的掩膜。然后计算归一化差异雪指数(NDSI)和归一化植被指数(NDVI),筛选出无雪覆盖的影像。最后,针对每年的合成影像进行随机森林分类,生成土地覆盖分类图,并评估分类精度,包括混淆矩阵、准确率、重要性百分比等。 适合人群:具备遥感数据分析基础,熟悉Google Earth Engine平台,对土地覆盖变化研究感兴趣的科研人员或学生。 使用场景及目标:①分析特定时间段内的土地覆盖变化;②研究火烧事件对土地覆盖的影响;③评估不同年份影像分类的准确性;④理解QA位掩码、NDSI、NDVI等技术的应用。 阅读建议:由于代码量较大且涉及多个步骤,建议读者先理解每个函数的功能,逐步调试和验证每一步的结果。此外,可以根据实际需求调整训练样本比例和分类参数,以优化分类效果。注意,代码中有大量注释掉的打印语句,可以在遇到问题时取消注释以便调试。

2025-05-24

地球科学基于Google Earth Engine的多代理系统设计:环境数据搜索与分析工具开发

内容概要:本文档介绍了多个用于与Google Earth Engine (GEE) 交互的Python脚本和代理(Agent)工具。首先定义了基础工具函数,如基于查询字符串搜索GEE目录、获取网页文本内容等。接着,构建了三个子代理:gee_search_agent负责将用户请求传递给GEE目录搜索工具;web_search_agent帮助用户进行网络搜索以获取地图和数据集的附加信息;web_fetch_agent则根据URL获取网页内容。最后,构建了一个根代理(root_agent),它协调这些子代理的工作,帮助用户发现并理解GEE数据集,包括提供数据集的标题、时间覆盖范围、空间分辨率和覆盖范围、使用建议、比较注释以及直接链接到GEE目录等详细信息。; 适合人群:对地理信息系统(GIS)、遥感数据处理或环境科学领域感兴趣的开发者、研究人员或学生。; 使用场景及目标:①利用API接口自动搜索和获取特定主题的GEE数据集;②为研究项目选择合适的数据源时评估不同数据集的质量和适用性;③快速了解某个GEE数据集的关键属性及其潜在应用场景。; 阅读建议:由于文档涉及大量技术细节,建议读者先熟悉Python编程语言的基础知识及GEE平台的基本概念。同时,对于每个代理的功能和用法,可以通过实际操作来加深理解,尝试调用示例代码并查看返回结果。

2025-05-24

【地球引擎与Python编程】基于Colab的Earth Engine Companion交互式地理空间任务处理系统设计:通过Gemini API实现逐步代码执行与验证

内容概要:本文档介绍了一个名为“Earth Engine Companion”的交互式工具,旨在利用Google Earth Engine和Python解决地理空间问题。该工具基于Jupyter Notebook环境,通过Colab平台运行,支持Gemini、OpenAI、Anthropic和DeepSeek等多个大模型API。文档详细描述了工具的配置方法、使用步骤以及核心指令,包括任务分解、增量执行、最小化代码量、结果验证和逐步解释等。此外,文档还提供了具体的任务示例,如计算湖泊面积、展示特定城市的卫星图像等,并附有详细的Hydrolakes数据集属性说明。; 适合人群:具备一定Python编程基础并有兴趣使用Google Earth Engine进行地理空间数据分析的研究人员和开发者。; 使用场景及目标:①通过分解复杂任务为小步骤,逐步解决地理空间问题;②利用预定义的数据集(如Hydrolakes)进行地理空间分析;③在Colab环境中测试和运行由大模型生成的代码,确保每一步都正确无误。; 其他说明:此工具主要用于演示目的,直接运行大模型生成的代码存在风险,建议仅在受控环境中使用。用户需要获取相应的API密钥,并将其保存到Colab的Secrets中。文档还强调了代码执行的安全性和逐步验证的重要性,确保每一步都经过验证后再继续下一步。

2025-05-24

GEE-agent-+LLM.py

GEE_agent_+LLM.py

2025-05-24

【地球科学与遥感】基于大型语言模型的Earth Engine代码生成与图像分析:自动化地理信息可视化系统设计

内容概要:Earth Engine Agent 是一个基于大型语言模型(LLM)的工具,旨在与Google Earth Engine (EE) API进行交互。它能根据用户的查询自动生成EE代码片段,可视化所请求的信息,并分析生成的地图瓦片是否符合查询要求。该工具利用Gemini LLM来理解和生成代码,并通过图像识别评估地图瓦片的相关性和质量。如果初次生成的地图瓦片不符合要求,工具将根据反馈不断调整代码直至获得满意结果。此外,用户需要安装特定依赖并配置API认证才能使用该工具。; 适合人群:对地理信息系统(GIS)、遥感影像处理或自动化代码生成感兴趣的开发者和技术爱好者。; 使用场景及目标:① 根据用户提供的主题或问题,自动生成并执行地球引擎代码片段,以获取和展示相应的地图瓦片;② 分析生成的地图瓦片,确保其内容与用户需求高度匹配;③ 在多次迭代中优化代码,提高地图瓦片的质量和相关性。; 其他说明:由于该工具会自动运行由LLM生成的Python代码,因此存在一定的风险,包括但不限于代码错误或不可预见的行为。用户应谨慎使用,并确保了解潜在的风险。此外,该工具目前仅支持Gemini LLM,并且需要设置环境变量和完成API认证。

2025-05-24

【地球引擎与地理信息系统】基于Gemini模型的地球图像分析与可视化系统设计:交互式地图与图像处理功能实现

内容概要:本文介绍了一个基于Python的交互式地球引擎(Earth Engine)可视化与分析工具,旨在通过调用一系列函数来展示和分析地理空间数据。工具主要由地图显示、用户界面组件和LLM(大语言模型)驱动的任务执行三部分组成。它支持多种任务,如展示特定区域的数字高程模型(DEM)、显示火灾后果或港口等特定地点的卫星图像。工具还提供了详细的函数定义,包括设置地图中心、加载图层、获取数据集描述、显示图层、进行图像分析以及评分等功能。此外,还包括错误处理机制、重试逻辑和用户交互提示,确保系统的稳定性和用户体验。 适合人群:具备一定编程基础,尤其是对地理信息系统(GIS)和Python有初步了解的研发人员或数据分析师。 使用场景及目标:①通过交互式界面快速展示特定地理位置的遥感影像或地理空间数据;②利用LLM进行图像分析,提供客观、精确的地理特征描述;③评估图像分析结果与用户查询的相关性,确保分析结果的准确性;④帮助用户理解不同数据集的特点及其适用场景,选择最合适的可视化参数和数据源。 阅读建议:此工具不仅是一个简单的地理空间数据分析平台,更是一个学习如何结合LLM进行复杂任务处理的实例。因此,在学习过程中应重点关注各个函数的设计思路和实现细节,特别是如何通过LLM调用实现自动化的地理空间数据分析流程。同时,注意理解系统的工作原理,包括LLM的配置、用户界面的设计以及前后端的数据交互方式。

2025-05-24

【地理信息系统】基于Google Earth Engine的荷兰地表温度分析:数据处理与可视化脚本实现

内容概要:本文档展示了如何使用Google Earth Engine(GEE)脚本对荷兰的地表温度(LST)进行时空分析。首先导入了2017年国家边界要素集合,并筛选出荷兰边界数据,将其添加到地图上作为研究区域。接着引入MODIS地表温度图像集,在设定2016年至2022年的日期范围内,筛选并处理该时间段内的LST数据,选取白天1公里分辨率的地表温度波段转换为摄氏度单位。然后,基于荷兰边界创建了地表温度的时间序列图表,直观展示温度变化趋势。此外,计算了荷兰地区8天平均温度,并将结果剪裁到荷兰边界范围内,以彩色图层形式添加到地图上,同时设置了颜色渐变来表示不同温度区间。最后,将生成的平均温度图像导出到Google Drive中存储。; 适合人群:从事地理信息系统、环境科学、气象学等领域研究或工作的人员,尤其是对遥感数据分析感兴趣的学者和技术人员。; 使用场景及目标:①学习如何利用GEE平台获取、处理和分析全球范围内的卫星遥感数据;②掌握时间序列分析方法,了解地表温度随时间的变化规律;③熟悉如何将处理后的数据可视化并导出用于进一步的研究或报告制作。; 其他说明:此文档提供的脚本代码可以直接在GEE平台上运行,用户可以根据自己的研究需求调整参数设置,如研究区域、时间范围、空间分辨率等。

2025-05-21

【地理信息系统】基于Google Earth Engine的土地覆盖分类:多光谱影像处理与随机森林模型应用

内容概要:本文档为gee scripts.txt,主要介绍了一段用于地球引擎(Google Earth Engine)进行土地覆盖分类的脚本代码。首先定义了一个研究区(ROI),并将其显示在地图上。接着从Landsat 9卫星影像中筛选符合条件(云量小于5%,2022年1月到12月期间)的图像,对其进行中值合成与裁剪处理后添加到地图图层。然后创建了样本数据集,选择特定波段并基于样本数据生成训练集和测试集。最后使用随机森林算法构建分类模型对图像进行分类,并将分类结果以不同颜色展示在地图上。 适合人群:从事地理信息系统、遥感数据分析等相关领域的科研人员和技术工作者。 使用场景及目标:①适用于需要对特定区域进行土地利用/覆盖变化监测的研究或项目;②旨在帮助用户掌握如何利用Google Earth Engine平台进行遥感影像预处理、样本采集以及分类建模的方法。 其他说明:此脚本提供了完整的土地覆盖分类流程示例,用户可以根据实际需求调整参数设置如研究区范围、影像源、分类方法等。同时,在执行过程中应注意检查各步骤输出结果确保数据准确性。

2025-05-21

【地理信息系统】基于Google Earth Engine的南苏丹岩石指数计算与可视化:遥感影像处理及导出系统设计

内容概要:本文档详细记录了使用Google Earth Engine (GEE) 平台对南苏丹地区进行遥感影像处理与分析的脚本代码。首先定义了南苏丹的地理边界作为研究区域(ROI),接着加载了2020年Landsat 8卫星图像数据集并进行了云量筛选和中值合成处理。然后计算了岩石指数(RI),通过归一化差值法对比近红外波段(SR_B7)和蓝光波段(SR_B2),并对结果进行了可视化设置,包括色彩映射和裁剪到研究区域内。最后将处理后的图像导出为GeoTIFF格式存储于Google Drive。; 适合人群:从事地理信息系统、遥感科学或环境监测领域的科研人员和技术开发者。; 使用场景及目标:①用于监测特定区域的地表特征变化情况;②为地质勘探、环境评估等提供科学依据;③作为教学案例帮助初学者掌握GEE平台的基本操作技能。; 阅读建议:建议读者提前熟悉Google Earth Engine平台的操作界面以及基本概念,同时具备一定的JavaScript编程基础以便更好地理解和修改代码逻辑。

2025-05-21

【地理信息系统】基于GeoPandas的火灾配置文件生成:火灾数据处理与时间缓冲设置

内容概要:本文档提供了创建火灾配置文件的Python脚本,主要功能是根据GeoJSON文件中的火灾数据生成配置文件,用于火灾预测和分析。它包括两个主要函数`create_fire_config_globfire`和`create_fire_config_mtbs`,分别处理来自GlobFire和MTBS数据源的数据。这两个函数都执行相似的操作:首先读取GeoJSON文件,将时间字段转换为Python的datetime对象并按年份筛选数据,接着计算每个火灾事件的首次和最后一次出现的时间,为每个火灾事件创建包含经纬度、开始时间和结束时间(前后各扩展四天)的配置条目,最后将所有配置信息保存为YAML格式的文件。此外,还提供了一个`load_fire_config`函数用于加载已生成的配置文件。; 适合人群:对地理信息系统(GIS)、火灾数据分析或Python编程感兴趣的开发者或研究人员。; 使用场景及目标:①从GeoJSON文件中提取火灾数据并转换成便于处理的格式;②为火灾预测模型准备输入数据,包括确定火灾发生地点和时间范围;③研究不同时间段内的火灾发展趋势。; 阅读建议:本文档侧重于代码实现细节,建议读者具备一定的Python编程基础,特别是对pandas、geopandas和yaml库有所了解。在学习过程中,可以结合实际的GeoJSON文件进行实践操作,以便更好地理解代码逻辑。

2025-05-21

【Google Drive API】基于Python的Google云端硬盘文件下载系统:批量下载指定文件夹内容至本地存储

内容概要:本文档提供了一个Python脚本,用于从Google Drive下载指定文件夹内的所有文件到本地。该脚本通过OAuth 2.0进行身份验证,确保安全访问Google Drive API。它定义了`DriveDownloader`类,该类实现了获取Google Drive服务、解析文件夹路径获取ID、以及下载文件夹内所有文件的功能。此外,还展示了如何处理分页以确保能获取大量文件列表,并使用`tqdm`库显示下载进度条。; 适合人群:熟悉Python编程语言,对Google Drive API有一定了解,需要批量下载Google Drive文件的用户或开发者。; 使用场景及目标:①需要从Google Drive批量下载文件并保存到本地磁盘;②希望了解如何通过Python脚本与Google Drive API交互,包括身份验证、文件操作等;③对于需要定期同步Google Drive上特定文件夹内容到本地环境的应用场景非常有用。; 阅读建议:在阅读此脚本时,重点理解OAuth 2.0认证流程、`DriveDownloader`类的方法实现逻辑(特别是`download_folder`方法),以及如何处理API请求中的分页问题。同时,可以尝试运行该脚本,并根据实际需求调整相关参数,如下载路径等。

2025-05-21

【地理空间数据分析】基于Google Earth Engine的越南城市与植被动态变化分析:2024年卫星图像与指数可视化系统设计

内容概要:本文介绍了2024年越南城市与植被动态变化的卫星数据分析项目。该项目基于Google Earth Engine JavaScript API进行,旨在探索越南地区的城市化和植被变化情况。研究区域为越南,边界数据来源于`USDOS/LSIB_SIMPLE/2017`,主要使用了USGS Landsat 8 Collection 2 Tier 1 TOA Reflectance数据集。项目涵盖了从显示卫星图像到生成中位数合成图像,并计算和可视化NDVI(归一化植被指数)、NDBI(归一化建筑指数)和MNDWI(修正水体指数)。所有结果均裁剪至越南边界范围内。; 适合人群:对地理空间数据分析感兴趣的科研人员、地理信息系统(GIS)专业学生以及从事环境监测、城市规划等领域的工作人士。; 使用场景及目标:① 利用Google Earth Engine平台进行遥感数据分析;② 掌握如何通过JavaScript API获取并处理卫星影像数据;③ 学习如何计算和展示不同类型的环境指数(如NDVI、NDBI、MNDWI),评估环境条件;④ 了解如何将分析结果应用于实际的城市规划和环境保护工作中。; 其他说明:本项目作为课程《地理空间数据分析入门》的一部分,提供了详细的代码示例和操作步骤,读者可以通过提供的链接直接在Google Earth Engine平台上查看和运行代码。

2025-05-25

【地理信息系统】基于Google Earth Engine的城市绿地空间分析:印度尼西亚城市Sentinel-2 EVI估算与建筑邻近性分析

内容概要:本文介绍了利用Google Earth Engine JavaScript API对印尼多个城市(包括Kota Cirebon、Kota Tangerang、Kota Bekasi、Kota Depok和Kota Bogor)的绿地空间进行分析的项目。该项目基于Sentinel-2影像估算EVI(增强植被指数),并进行了绿地与建筑物的距离分析。研究的时间范围为2024年全年,使用了哨兵2号地表反射率数据、全球行政单元图层和开放建筑V3多边形数据集等。具体步骤包括选择城市并提取行政边界、处理Sentinel-2影像、创建EVI复合图像、计算绿地面积及其占城市总面积的比例,以及计算绿地与建筑物之间的距离。 适合人群:地理信息系统(GIS)、遥感技术的学习者或从业者,特别是对城市绿地空间分析感兴趣的科研人员和技术爱好者。 使用场景及目标:① 使用Google Earth Engine平台进行城市绿地空间的制图和量化;② 掌握基于Sentinel-2数据的EVI计算方法;③ 学习如何评估绿地与建筑物之间的距离关系。 其他说明:本项目不仅提供了具体的代码示例,还详细记录了每一步的操作流程,帮助用户更好地理解和应用Google Earth Engine JavaScript API来完成类似的城市绿地空间分析任务。

2025-05-25

【地理信息系统】基于Google Earth Engine的印度尼西亚干旱监测:2024年VCI、TCI和DSI指数计算与时间序列可视化

内容概要:本文介绍了利用Google Earth Engine JavaScript API对印度尼西亚2024年干旱状况进行监测和可视化的项目。项目主要计算并展示了植被状态指数(VCI)、温度状态指数(TCI)和干旱严重程度指数(DSI)。这些指数基于MODIS提供的植被指数、地表温度和蒸散量数据集,以及简化国际边界的国家边界数据集。项目还创建了VCI的时间序列图,所有地图结果均被裁剪为仅显示印度尼西亚区域。每个步骤都详细记录了计算公式、时间范围和可视化设置。 适合人群:从事地理信息系统、气候学研究或遥感技术的专业人士,尤其是那些对干旱监测感兴趣的科研人员和技术开发者。 使用场景及目标:① 使用MODIS数据集计算VCI、TCI和DSI三个干旱相关指数;② 将计算结果可视化为地图,并按印度尼西亚的边界裁剪;③ 创建VCI的时间序列图表,以便更直观地展示干旱变化趋势;④ 掌握Google Earth Engine JavaScript API的基本操作和应用技巧。 其他说明:此项目不仅提供了详细的代码示例和数据源引用,还通过具体的任务指导(如计算特定指数、设置时间范围等),帮助用户理解和实践如何利用遥感数据进行干旱监测。建议读者在学习过程中结合实际操作,逐步掌握各项技能。

2025-05-25

【地理信息系统】基于Google Earth Engine的洪水监测与损害评估:使用Sentinel-1 SAR和GHS人口数据进行区域影响分析

内容概要:本文展示了如何使用Google Earth Engine JavaScript API和Sentinel-1 SAR数据进行洪水监测与损害评估。项目分为三个主要部分:洪水制图、水体可视化以及人口损害评估。具体步骤包括:利用Sentinel-1 SAR GRD数据集提取“VH”波段图像,创建洪水前后的马赛克图像并应用阈值来生成二进制洪水掩膜;通过设置不同阈值提取水体,并计算洪水面积;最后,使用GHS人口网格数据评估受影响的人口分布。整个分析周期为2024年3月1日至3月30日(洪水前)和2024年7月1日至7月30日(洪水后),研究区域由用户自定义多边形划定。 适合人群:对地理信息系统(GIS)、遥感技术或灾害管理感兴趣的科研人员和技术开发者。 使用场景及目标:①掌握如何使用Google Earth Engine平台进行洪水监测;②学习如何利用遥感数据进行自然灾害的影响评估;③理解如何结合人口统计数据进行灾情分析。 其他说明:本项目不仅提供了详细的代码示例和操作指南,还附带了完整的输出结果展示,包括洪水掩膜、水体提取图以及受灾人口的可视化图表。此外,提供了链接可以直接在Google Earth Engine平台上查看和运行相关代码。

2025-05-25

Air Quality Assessment over New Delhi

这个项目展示了如何使用 Google Earth Engine JavaScript API,基于 Sentinel-5P 数据评估新德里的 NO₂空气质量。分析包括预处理步骤、合成图像统计、分类和每日时间序列可视化。

2025-05-25

【地理信息系统】基于Google Earth Engine的国家行政区划边界数据处理:获取并可视化指定国家的一级行政区信息

内容概要:本文档提供了一个用于配置和获取特定国家行政区划(如部门或州)边界数据的脚本示例。首先通过修改变量设置感兴趣国家的ISO代码和名称,然后从服务器加载并筛选出该国所有一级行政区划单位(ADM1)。通过聚合属性值获取这些单位的名字列表及其数量,并将结果显示在控制台中。此外,还提供了可选的地图可视化功能,当存在有效数据时,可以将这些边界显示在地图上,便于直观查看。 适合人群:地理信息系统(GIS)开发者、数据分析师以及需要处理空间数据的研究人员或工程师。 使用场景及目标:①为用户提供一种快速获取指定国家行政区域边界信息的方法;②帮助用户理解如何利用Earth Engine API进行地理空间数据分析;③辅助研究人员进行地理空间数据的可视化展示。 阅读建议:在实际应用中可以根据自己的需求调整国家代码等参数来获取不同地区的数据。对于初学者来说,在尝试之前应先熟悉Google Earth Engine平台的基本操作,包括如何创建脚本、运行代码及解释输出结果。

2025-05-24

【地理信息系统】基于Google Earth Engine的多灾害风险评估:水域检测与地形分析综合系统设计

内容概要:本文档详细介绍了如何利用Google Earth Engine (GEE) 进行水体检测、距离计算、地形分析以及多灾害风险评估。首先,通过JRC全球地表水数据和Dynamic World数据集,创建了水体掩膜并结合两者的检测结果生成综合水体掩膜。接着,使用HydroSHEDS数据集绘制了自由流动河流,并计算了距离河流的距离栅格。随后,基于Copernicus DEM数据生成了数字高程模型(MDE)和坡度图,并对坡度进行了分类以评估洪水和滑坡的风险。最后,综合水体、坡度、距离河流等因素,构建了洪水威胁指数、滑坡威胁指数,并进一步合成多灾害综合威胁指数。此外,还提供了对原始威胁分数进行归一化处理的方法,并最终生成加权多灾害综合威胁指数。所有生成的地图和指数均已在GEE平台上可视化展示,并提供了将结果导出到GEE资产或Google Drive的具体步骤。 适合人群:具有地理信息系统(GIS)和遥感基础知识的研究人员和技术人员,特别是从事自然灾害风险评估工作的专业人员。 使用场景及目标:①结合多种数据源进行水体检测和分析;②计算距离河流的距离,评估水资源分布;③基于DEM数据进行地形分析,包括坡度计算与分类;④构建洪水和滑坡威胁指数,评估区域内的自然灾害风险;⑤通过加权综合不同威胁因素,生成多灾害综合威胁指数,为灾害预防和管理提供科学依据。 其他说明:本文档不仅提供了详细的代码实现,还强调了各步骤背后的逻辑和方法论,帮助用户理解每个操作的目的和意义。所有生成的地图和指数均可通过GEE平台直接查看,便于用户快速验证和调整参数。此外,文档还包含了数据导出部分,方便用户将分析结果用于后续研究或实际应用。

2025-05-24

【地理信息系统】基于GEE的栅格数据处理与统计分析:灵活选择行政边界并计算区域统计数据

内容概要:本文档提供了一个用于灵活选择行政边界(国家、省/州、市/县级别)并进行多威胁栅格裁剪及区域统计计算的Google Earth Engine (GEE) 脚本。用户需根据需求配置相应的国家或地区信息,包括ISO代码和具体名称。脚本内部逻辑会依据配置自动确定选择的行政级别,并加载相应的地理边界数据集。之后,它将可视化选定的边界,并对指定的“多威胁”栅格数据进行裁剪与显示。最后,计算并输出裁剪后的栅格数据在选定区域内的多种统计指标,如均值、中位数、最小最大值、标准差等。 适合人群:地理信息系统(GIS)开发者、环境科学家、数据分析员以及需要处理空间数据的研究人员和技术人员。 使用场景及目标:①需要根据特定的行政区划单位对遥感影像或其他空间数据进行裁剪和分析;②希望快速获取某一区域内多威胁因素的影响程度及其分布特征;③作为教学工具,帮助学生理解如何利用GEE平台进行空间数据分析和处理。 阅读建议:由于该脚本涉及较多GEE API调用和空间数据操作,建议读者先熟悉GEE平台的基本概念和常用方法,同时可以参考官方文档来加深对每个步骤的理解。在实际应用时,请确保按照说明正确设置参数,并注意检查输出结果的有效性和准确性。

2025-05-24

【地理信息系统】基于Google Earth Engine的行政区划边界可视化:国家至市镇层级地图展示系统设计

内容概要:本文档是关于gee scripts的脚本代码,主要展示了如何在Google Earth Engine平台上加载和可视化地理边界数据。代码中注释掉了不同层级(国家、部门、市镇)的行政区划数据集的选择,实际操作时可以根据需要取消对应层级数据集的注释。通过设置地图中心点坐标和缩放级别,定义样式参数(如填充颜色、线条颜色与宽度),将样式应用于选定的行政区划要素集合,并将其作为图层添加到地图上进行展示,最终显示的是市镇级别的边界。 适合人群:对地理信息系统以及Google Earth Engine平台有一定了解并希望学习或应用该平台进行地理空间数据分析和可视化的技术人员或研究人员。 使用场景及目标:①在研究或项目中需要基于特定区域(如国家、省、市等)进行地理空间数据处理和分析;②希望通过自定义样式来突出显示特定的地理边界信息以便于进一步的空间分析或者制图展示。 阅读建议:由于这是一段具体的代码示例,在阅读时应重点关注其中涉及的数据源选择、样式设置以及图层添加等关键步骤,同时可以尝试在自己的Google Earth Engine环境中运行这段代码,以更好地理解其效果并根据实际需求调整参数。

2025-05-24

【地理信息系统】基于Google Earth Engine的洪水易发区识别:结合SAR影像和地形数据分析的系统实现

内容概要:本文提供了一个Google Earth Engine脚本,用于识别易受洪水影响的区域。该脚本通过结合合成孔径雷达(SAR)图像和地形数据(如坡度),确定潜在的洪水风险区。具体步骤包括定义研究区域(AOI)、设置时间范围、加载并预处理SAR图像、分析地形特征、设定阈值来识别平坦区域和可能存在的水体或湿润区域,最后将这些信息组合以确定脆弱区域。文中还提供了三种不同的脆弱性评估方法,并展示了如何可视化和导出结果。 适合人群:对地理信息系统(GIS)、遥感技术和洪水风险管理感兴趣的科研人员和技术开发者。 使用场景及目标:①通过SAR影像和地形数据分析,识别潜在洪水风险区域;②为灾害预防、应急响应和城市规划提供科学依据;③帮助研究人员理解洪水发生机制及其与地形的关系。 阅读建议:此资源主要面向有一定编程基础的用户,特别是熟悉JavaScript和Google Earth Engine平台的人士。在实际应用中,需要根据具体的地理位置调整参数设置,并确保有足够的SAR数据覆盖所需的时间段。此外,建议深入理解各步骤背后的原理,以便更好地解释所得结果并优化分析流程。

2025-05-24

【地理信息系统】基于Google Earth Engine的夜间灯光影像处理与对比:2017年5月和2020年5月平均辐射数据提取与可视化

内容概要:本文档展示了如何利用Google Earth Engine (GEE) 平台,获取并处理夜间灯光数据。具体步骤包括:从NOAA提供的VIIRS月度合成数据集中筛选出2017年5月和2020年5月的平均辐射亮度图像,对图像进行裁剪以适应指定区域(geometry),并设置可视化参数nighttimeVis来显示这两个月份的夜间灯光情况。最后,将处理后的图像导出到Google Drive中,便于进一步分析或分享。; 适合人群:地理信息系统(GIS)从业者、环境监测研究人员以及对夜间灯光数据分析感兴趣的学者和技术人员。; 使用场景及目标:①研究特定区域内夜间灯光变化趋势;②评估城市发展、能源消耗或人类活动模式;③为政策制定提供数据支持;④教学演示夜间灯光遥感数据处理流程。; 阅读建议:读者应具备基本的JavaScript编程能力和GEE平台使用经验,以便更好地理解和应用本文档中的代码示例。同时,在实际操作时需确保已登录GEE账号并正确配置了相关权限。

2025-05-24

【地球引擎应用】基于Python的苏丹作物休耕检测系统设计和代码全解

内容概要:本文档详细介绍了利用Google Earth Engine (GEE) 和 Python 脚本进行苏丹地区耕地休耕监测的方法。首先,初始化GEE环境并加载必要的边界数据集,包括苏丹行政区划边界和测试区域。接着,定义了模型参数如研究区域(ROI)、项目名称、子分区属性、Z分数阈值等。然后,通过预处理影像集合(支持MODIS、Sentinel-2和Landsat三种卫星数据源),计算归一化植被指数(NDVI)时间序列,并基于此构建纯作物信号统计量。之后,分别进行了时间和空间异常分析,确定每个季节内哪些像素可能处于休耕状态。最后,结合时空异常结果,当一个像素在至少两个检测中被判定为休耕时,则最终确认其为休耕状态。此外,还提供了自动校准参数的功能以及结果导出选项。 适合人群:具有地理信息系统(GIS)基础知识的研究人员和技术人员,特别是对遥感数据分析和农业监测感兴趣的专业人士。 使用场景及目标:①评估不同作物生长季期间耕地是否处于休耕状态;②通过调整参数优化检测精度;③为政策制定者提供关于土地利用变化的信息支持;④适用于需要长期跟踪特定区域内耕地动态变化的应用场景。 阅读建议:由于涉及大量技术细节,建议读者先熟悉GEE平台的基本操作和Python编程语言的基础知识。同时,在实践中可以根据实际需求修改参数设置,如选择不同的卫星数据集或调整时间范围等。对于希望深入了解算法原理的用户,可以重点关注时空异常分析部分的实现逻辑。

2025-05-24

Palettes_and_Visualization.ipynb

RadGEEToolbox 是一个开源 Python 包,它简化了使用 Google Earth Engine Python API 对卫星图像进行处理和分析。它提供了用于过滤、掩膜、镶嵌、光谱指数计算以及从多光谱(Landsat、Sentinel-2)和 SAR(Sentinel-1)数据集中提取统计数据的现成工具。RadGEEToolbox 专为 Google Earth Engine 的新手和高级用户设计,它最大限度地减少了重复脚本编写,加速了常见的遥感工作流程,并旨在在 Google Earth Engine API 的限制内最大化效率。无论是构建植被指数的时间序列还是沿样线提取地表属性,这个包都有助于更快地获得结果。Streamlined Multispectral & SAR Analysis for Google Earth Engine Python API

2025-05-24

S1_SAR_Backscatter_Basic_Usage.ipynb

RadGEEToolbox 是一个开源 Python 包,它简化了使用 Google Earth Engine Python API 对卫星图像进行处理和分析。它提供了用于过滤、掩膜、镶嵌、光谱指数计算以及从多光谱(Landsat、Sentinel-2)和 SAR(Sentinel-1)数据集中提取统计数据的现成工具。RadGEEToolbox 专为 Google Earth Engine 的新手和高级用户设计,它最大限度地减少了重复脚本编写,加速了常见的遥感工作流程,并旨在在 Google Earth Engine API 的限制内最大化效率。无论是构建植被指数的时间序列还是沿样线提取地表属性,这个包都有助于更快地获得结果。Streamlined Multispectral & SAR Analysis for Google Earth Engine Python API

2025-05-24

Image_Collections_&_Useful_Operations.ipynb

RadGEEToolbox 是一个开源 Python 包,它简化了使用 Google Earth Engine Python API 对卫星图像进行处理和分析。它提供了用于过滤、掩膜、镶嵌、光谱指数计算以及从多光谱(Landsat、Sentinel-2)和 SAR(Sentinel-1)数据集中提取统计数据的现成工具。RadGEEToolbox 专为 Google Earth Engine 的新手和高级用户设计,它最大限度地减少了重复脚本编写,加速了常见的遥感工作流程,并旨在在 Google Earth Engine API 的限制内最大化效率。无论是构建植被指数的时间序列还是沿样线提取地表属性,这个包都有助于更快地获得结果。Streamlined Multispectral & SAR Analysis for Google Earth Engine Python API

2025-05-24

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除