- 博客(4636)
- 资源 (1934)
- 收藏
- 关注
原创 GEE AI:融合大语言模型LLM(Gemini)和geemap的交互式云计算
EE Genie笔记本使用指南 EE Genie笔记本提供双栏视图:左侧显示聊天记录,右侧为交互式geemap地图。用户可通过底部的默认提示语(如"展示澳洲大陆DEM高程图")直接回车执行,或输入自定义指令操作地图。系统会将地图拼接后发送给AI模型生成描述。 使用前需准备: Earth Engine访问权限 Google API密钥(需创建云项目并关联) 安装步骤: 安装必要包(geedim, tenacity等) 进行Earth Engine身份认证 初始化存储客户端和地图实例 注意事
2025-09-11 15:30:00
622
1
原创 ESA CCI 全球森林地上生物量(2007-2022)
摘要: ESA CCI发布的全球森林地上生物量数据集(v6.0)覆盖2007-2022年共10个年份,整合了Sentinel-1、Envisat ASAR、ALOS卫星等多源遥感数据,并采用改进的异速生长方程(基于GEDI和ICESat-2激光雷达数据)及反演算法,显著提升了数据精度。该数据集包含地上生物量(AGB,单位:吨/公顷)及其标准差栅格图层,以及1-50公里不同分辨率的聚合产品和年际变化产品(含变化量、标准差及质量标志)。与v5相比,v6新增2007和2022年数据,优化了时间一致性。数据以Net
2025-09-11 09:00:00
10
原创 Google Earth Engine(GEE)——合成孔径雷达 (SAR) 基础知识哨兵一号
Sentinel 传感器数据由欧盟的哥白尼计划生成,该计划得到欧洲航天局 (ESA) 的运营支持。Copernicus Sentinel 数据在完全、免费和开放的许可下提供。该许可证使 Google 可以将数据集成到他们的收藏目录中,并将其公开给许多 GEE 用户。ESA 应用 SAR 处理从原始 Sentinel-1 信号数据以 2 种格式生成 Level-1 数据:单视复合 (SLC) 和检测到的地面范围 (GRD)。干涉和部分极化参数提取需要 SLC(它包含相位和幅度信息),而 GRD 只是强度(
2025-09-11 08:30:00
21
原创 GEE python:绘制降水与洪水监测图
本文介绍了使用Google Earth Engine和Python进行地理空间数据分析的方法,包含两个主要应用:1) 基于ERA5月数据的伊朗地区降水量可视化,通过xee库转换为xarray数据集后绘制2018-2020年降水等值线图;2) Sentinel-1雷达数据分析,通过对比2019年3-4月VV极化影像差异监测洪水影响区域。代码展示了从数据获取、处理到可视化的完整流程,适用于气候监测和灾害评估,最终输出高分辨率降水分布图和洪水前后对比图。
2025-09-11 07:30:00
9
原创 GEE训练教程:墨西哥巴亚尔塔港至拉布法地区的海岸-内陆气候梯度变化
摘要:本文介绍了利用Google Earth Engine平台分析墨西哥巴亚尔塔港至拉布法地区海岸-内陆气候梯度的方法。研究通过定义60公里样带,整合WorldClim生物气候数据(年均温和降水量),计算距离梯度并建立多波段数据集。关键技术包括样带采样、坐标系统转换(UTM投影)和双轴可视化,揭示了沿海-内陆气候过渡特征。该方法为气候梯度研究、农业规划和水资源管理提供了有效工具,通过GEE代码实现了从数据准备、距离计算到可视化分析的全流程。
2025-09-11 02:47:52
11
原创 大气成分氨体积混合比 L3 (AIRSAC3MNH3 V3) 来自 NASA Aqua 上的 AIRS/AMSU,位于 GES DISC
大气中氨的质量浓度由用于研究大气氨的生成物组成。大气氨是全球氮循环的重要组成部分。在对流层中,氨与硫酸和硝酸等酸快速反应形成细颗粒物。这些含氨气溶胶会影响地球的辐射平衡,既直接影响入射辐射,也间接影响云凝结核。大气氨的主要来源包括农业活动,包括畜牧业,尤其是集约化动物饲养和化肥使用。大气氨的主要汇包括干沉降和降水的湿迁移,以及与酸反应转化为颗粒氨。大气中氨的测量值很少,但卫星提供了一种监测全球大气成分的方法。
2025-09-11 02:41:24
660
原创 GEE APP:一个国家二级行政单元的全球矢量边界查看应用
本文介绍了一种基于Google Earth Engine(GEE)的交互式行政区划选择工具开发方法。该工具通过GAUL 2015二级行政区划数据集,实现了国家-地区两级联动下拉菜单功能,支持快速定位特定分析区域并在地图上高亮显示。系统采用分割面板设计,左侧为包含日期筛选器的控制面板,右侧展示地图。核心功能包括动态填充下拉选项、"全部"地区选择以及响应式地图显示。该工具可广泛应用于遥感数据分析、环境监测、灾害评估等领域,并提出了集成更多数据源、添加统计功能等扩展建议。文章详细解析了数据加载
2025-09-10 17:00:00
10
原创 GEE AI:通过 LLM 使用 Google Earth Engine 进行遥感数据网络可视化
摘要 本文介绍了一款创新性的地理空间分析应用程序,通过整合大型语言模型(LLMs)与Google Earth Engine(GEE)平台,实现了卫星图像和土地利用数据的智能化可视化分析。系统采用三层架构设计:基于React的前端交互层、集成GPT-4的自然语言处理层和GEE地理数据处理层。用户可通过自然语言指令(如"显示东京2024年1-3月影像")获取专业的地理空间分析结果,包括多源卫星数据、时间序列分析和专题地图生成等功能。相比传统方法,该系统具有响应速度快(3秒内)、操作门槛低、可
2025-09-10 16:19:14
50
原创 Google Earth Engine:如何在GEE中实现精准对齐网格技巧
本文介绍了在Google Earth Engine中定义和网格对齐关注区域(AOI)的方法。首先创建矩形AOI几何体,然后通过定义0.25度的网格步长,使用snapPt函数将各顶点坐标四舍五入对齐到网格。最后重构多边形并添加容差处理确保几何有效性,同时在地图中对比显示原始(黑色)和对齐后(红色)的AOI边界。该方法能有效提高地理数据分析和可视化的一致性和准确性。
2025-09-10 10:00:00
18
原创 美国官方的国家级陆地和海洋保护区清单数据集
PAD-US是美国国家级陆地和海洋保护区数据库,包含四类数据资产:指定区域、地役权、费用和公告。该数据库整合各机构最佳可用数据,记录保护区边界、管理状态(GAP状态代码)和IUCN保护类别等信息。需注意数据存在边界差异和重叠问题,建议使用"费用"资产计算总面积。PAD-US 2.0提供可视化保护状态图层(1-4级),适用于宏观分析,但不建议用于小尺度精确测量或法律用途。数据通过doi:10.5066/P955KPLE引用,由美国地质调查局维护更新。
2025-09-10 07:00:00
743
原创 GEE训练教程:基于标准化降水指数(SPI)和归一化植被指数(NDVI)干旱与植被分析
本文介绍了利用Google Earth Engine平台进行干旱监测与植被响应分析的方法。研究选取美国西南部为区域,通过MODIS NDVI数据监测植被状况,结合CHIRPS降水数据计算标准化降水指数(SPI)。分析流程包括:1)定义研究区域;2)准备NDVI植被指数数据;3)计算年度降水量;4)计算SPI干旱指标;5)数据可视化展示;6)采样点相关性分析。结果显示SPI与NDVI呈正相关关系,表明降水增加促进植被生长。该方法具有云端处理、免费数据、自动化流程等技术优势,可应用于农业管理、水资源规划和灾害预
2025-09-09 19:17:13
20
1
原创 全球地面沉降数据集
开发的模型以高空间分辨率(约 2 公里)预测全球地面沉降幅度,提供由于全球每年约 17 公里3的固结导致的含水层储存损失的一阶估计,并量化沉降的关键驱动因素。该数据集的重点是通过使用先进的地理空间和建模技术创建全球地面沉降数据集。这项研究的成果包括对全球地面沉降幅度的综合估计、对固结导致的含水层储存损失的一级评估以及驱动沉降的关键因素的量化。已处理的训练沉降数据、已处理的输入变量、训练 csv 文件和运行建模脚本的参考文件,以及模型的全局沉降和沉降概率预测栅格,可在此 HydroShare 存储库。
2025-09-09 15:45:55
365
原创 用于沉淀和夹带研究的水同位素系统(WISPER)的影响
用于降水和夹带研究的水同位素系统 (WISPER) IMPACTS 数据集包含凝结水含量、水蒸气测量值和同位素比值,用于支持大西洋沿岸威胁性暴风雪微物理和降水调查 (IMPACTS) 实地考察活动。IMPACTS 是为期三年的冬季部署项目,旨在研究美国大西洋沿岸的暴风雪(2020-2023 年)。该活动旨在 (1) 提供对理解雪带形成、组织和演化机制至关重要的观测数据;(2) 研究雪粒的微物理特征及其可能的生长机制在不同雪带之间的差异;(3) 改进降雪遥感解译和建模,以显著提高预测能力。
2025-09-09 15:41:18
842
原创 GEE训练教程:特定区域内各行政区2005-2024年生长季的NDVI并可视化
本文介绍了利用Google Earth Engine平台对2005-2024年特定区域NDVI进行时序分析的方法。通过加载行政区划数据,筛选目标区域,并使用ESA WorldCover创建农田掩膜,结合MODIS NDVI数据,分析各行政区生长季植被变化。关键技术包括时间筛选(5-10月)、空间筛选(农田区域)和行政区统计单元分析。结果以CSV格式导出,可用于农业监测、政策评估和气候变化研究。方法具有250米空间分辨率和20年时间跨度,为生态环境管理提供科学依据。
2025-09-09 15:40:57
15
原创 GEE土地分类:基于不同机器学习方法和多源遥感的土地分类(kappa系数、整体精度和混淆矩阵、变量重要性)
基于Google Earth Engine的土地覆盖分类方法 摘要:本文介绍了一种利用Google Earth Engine平台,结合Sentinel-2卫星影像和ESA WorldCover数据进行土地覆盖分类的机器学习方法。研究采用分层采样策略,针对8类主要地物(树木、灌木、草地、农田、建设用地、裸地、水体和湿地)进行建模。通过计算NDVI、NDWI和NBR等光谱指数增强特征,比较了CART决策树和随机森林两种算法的分类效果。方法包含完整的预处理流程、模型训练和精度评估(混淆矩阵、Kappa系数、总体精
2025-09-09 10:00:00
23
原创 GEE错误:Image.reduceRegion: Provide ‘geometry‘ parameter when aggregating over an unbounded i
本文介绍了在GEE平台进行区域统计时遇到的错误及解决方法。错误是因reduceRegion函数参数使用不当导致的,具体表现为将矢量集合而非几何对象传入geometry参数。原代码中,delhiBoundary作为要素集合被直接使用,而正确的做法是应调用.geometry()方法将其转换为几何对象。修改后代码通过将delhiBoundary.geometry()作为参数传入,成功解决了"Provide 'geometry' parameter"报错问题,并最终实现了预期统计效果和可视化输出
2025-09-09 09:00:00
1319
原创 GEE AI 土地分类:基于Resnet的土地分类详细教程3(加载模型训练和对指定区域进行训练)
文章摘要:本文详细介绍了在Google Colab环境下进行地理空间数据处理和分析的完整流程。首先安装必要的Python库(如geopandas、rasterio、geemap等),然后通过Google Drive挂载和Earth Engine验证建立工作环境。核心内容包括:1)从geoBoundaries获取行政区划数据并随机采样;2)使用Google Earth Engine API下载指定区域的Sentinel-2卫星影像;3)将影像导出为GeoTIFF格式存储到Google Drive。文中提供了完
2025-09-09 07:00:00
21
原创 GEE训练教程:MODIS影像森林覆盖率和面积估算以及可视化
定义分析区域和时间范围。导入必要的数据,包括国际边界、保护区和 MODIS 影像。实现光谱混合分析 (SMA) 和森林覆盖率计算。生成森林覆盖率的统计数据和变化图表。将结果可视化并添加到地图查看器中。在脚本的第一部分,我们定义了要分析的区域(aoi)和时间范围(date_start和date_end用户可以根据需要修改这些参数。本博客可以让大家分析特定区域的森林覆盖变化,并获取相关的统计信息。这对于环境监测和研究非常有帮助。
2025-09-08 22:37:02
282
原创 天气研究与预报 (WRF) 模型 IMPACTS V1
天气研究与预报 (WRF) 模型 IMPACTS 数据集包括由天气研究与预报 (WRF) 模型为大西洋沿岸威胁性暴风雪的微物理和降水调查 (IMPACTS) 实地活动模拟的模型数据。IMPACTS 是为期三年的冬季部署项目,旨在研究美国大西洋沿岸的暴风雪(2020-2022 年)。该活动旨在 (1) 提供对理解雪带形成、组织和演变机制至关重要的观测数据;(2) 研究雪粒的微物理特性和可能的生长机制如何随雪带而变化;(3) 改进降雪遥感解译和建模,以显著提高预测能力。
2025-09-08 22:27:01
739
原创 GEE训练教程:基于Landsat 8卫星影像识别并提取指定区域内无云覆盖的区域多边形,最终导出为矢量文件
本文介绍了一种利用Google Earth Engine平台从Landsat 8影像中提取无云区域的方法。通过定义研究区域、创建云检测算法(基于QA_PIXEL波段位运算)、筛选高质量影像(云量<10%),将无云区域转换为矢量多边形,最终导出为SHP或GeoJSON格式。该方法适用于生态环境监测、农业分析和海岸线研究,具有自动化程度高、处理效率高等优势,可为定量遥感分析提供高质量的无云数据基础。文章还提供了常见问题的解决方案和完整的实现代码。
2025-09-08 09:00:00
602
原创 GEE训练教程:2001-2024年火灾频率的分析(潘塔纳尔湿地)
本研究利用Google Earth Engine平台分析了2001-2024年潘塔纳尔湿地的火灾频率。通过MapBiomas火灾数据集,采用空间统计和可视化方法,揭示了火灾的空间分布特征和时间变化趋势。结果显示北部火灾频率高于南部,2020年特大火灾烧毁28%面积,不同保护单位间火灾频率差异显著。研究建议加强火灾监测、实施差异化保护策略和生态恢复项目。该分析展示了云端遥感大数据处理在生态环境监测中的高效性和可重复性优势。
2025-09-08 04:49:41
326
原创 在 GES DISC 进行 AIRS/Aqua L2 CO2 支持检索(仅限 AIRS)V005(AIRS2SPC)
大气红外探测器 (AIRS) 是搭载于第二个地球观测系统 (EOS) 极地轨道平台 EOS Aqua 上的一台光栅光谱仪 (R = 1200)。AIRS 与先进微波探测装置 (AMSU) 和巴西湿度探测器 (HSB) 结合,构成了一个由可见光、红外和微波传感器组成的创新型大气探测组。AIRS 支持产品包括标准产品中发现的量的更高垂直分辨率剖面图以及中间输出(例如,仅微波反演)、痕量气体丰度等研究产品以及详细的质量评估信息。支持产品剖面图包含 1100 至 0.016 mb 之间的 100 个气压级。
2025-09-08 04:14:13
558
1
原创 GEE训练教程:获取2015至2024年间的Sentinel-2卫星影像数据,生成并可视化多个波段的时间序列变化图表
本文介绍了一个基于Google Earth Engine平台的时间序列遥感分析方法。通过在经度115°、纬度33°的测试点创建100米和1000米缓冲区,获取2015-2024年Sentinel-2卫星影像数据。代码实现了两个可视化图表:1)测试点B1、B2、B3波段时间序列变化;2)比较点、100米和1000米区域B11波段变化。该方法利用空间缓冲区和时间序列分析,展示了不同空间尺度下遥感特征的变化趋势,为地理环境监测提供了一种有效的技术手段。
2025-09-07 13:00:00
22
原创 GEE APP:基于全球矢量数据和多源数据的影像数据查看和波段信息下载
本文介绍了一个基于Google Earth Engine开发的区域影像资源浏览器,该工具提供交互式地理空间数据浏览功能。主要特点包括: 使用FAO全球行政单元数据集(GAUL)支持按国家/地区筛选 将遥感数据按9大主题分类组织,包括光学影像、土地植被、气候等 采用分栏式UI设计,左侧为控制面板,右侧地图显示 核心功能实现包括: 国家/地区多级选择 按日期范围筛选数据 数据集解析与访问 波段信息可视化 该工具整合了Landsat、Sentinel等主流卫星数据,为用户提供便捷的区域影像资源浏览体验。
2025-09-07 10:00:00
20
原创 GEE AI:基于 YOLOv5: 进行卫星图像目标检测
本文介绍了一个基于YOLOv5的目标检测项目,用于处理Google Earth Engine导出的卫星图像。项目包含完整的实现流程:从YOLOv5环境配置和自动下载COCO128数据集,到模型训练(50个周期)和权重保存,再到对GEE导出图像进行推理检测,最后可视化检测结果。代码支持自动下载数据集、图像缓存加速训练,并提供了0.25的置信度阈值过滤检测结果。整个方案展示了如何将GEE遥感数据与YOLOv5模型结合,实现端到端的航拍图像目标检测。
2025-09-07 09:00:00
420
原创 2000 年至今全球的基于 EO 的初级生产总值数据集
该数据集提供了2000-2023年全球30米分辨率的未校准初级生产总值(uGPP),由Land & Carbon Lab Global Pasture Watch计划开发。数据采用光能利用率方法建模,整合了Landsat、MODIS温度和CERES光合有效辐射数据。所有土地覆盖类型统一设置最大光能利用率为1 gC/m²/天/MJ,方便用户后期校准。数据以双月为单位生成,经年累积后形成年度uGPP值(gC/m²/年)。主要限制包括输入数据分辨率差异导致的微气候条件遗漏、Landsat7传感器故障造成的
2025-09-07 07:00:00
760
原创 GEE训练教程:基于2001年-2202年土地分类数据的阿根廷草地稳定性遥感分析
本研究基于Google Earth Engine平台,分析了阿根廷开阔木本植被区2001-2022年的草地稳定性。通过筛选22年间MapBiomas土地覆盖数据,计算草地(地类代码4)出现频率,识别出22年持续稳定的草地区域。结果显示在250米分辨率下,部分区域始终保持草地覆盖。该分析为生态系统监测、土地退化评估和保护规划提供了重要依据,技术特点包括长时间序列分析、频率统计方法和自动化处理流程。研究成果以栅格图像形式输出,空间参考为WGS84坐标系。
2025-09-06 20:53:31
26
原创 来自 Howland 2003 活动的机载多角度成像光谱仪 (AirMISR) 数据
AIRMISR_HOWLAND_2003 数据是在 2003 年 8 月 28 日飞越缅因州豪兰森林的一次实地任务中获得的。加利福尼亚州帕萨迪纳的喷气推进实验室 (JPL) 提供了该数据。机载多角度成像光谱仪 (AirMISR) 是一种机载仪器,用于获取与星载多角度成像光谱仪 (MISR) 仪器类似的多角度图像,旨在为地球生态和气候研究做出贡献。AirMISR 搭载在 NASA ER-2 飞机上。加利福尼亚州帕萨迪纳的喷气推进实验室为 NASA 制造了该仪器。
2025-09-06 20:51:54
909
原创 GEE python:基于气候数据的降水分析和基于sentinel-1的洪水分析
本文介绍了使用Google Earth Engine和Python进行气象与洪水监测分析的技术流程。首先通过Earth Engine API获取伊朗地区2018-2020年的ERA5月降水量数据,转换为xarray数据集后绘制降水量等值线图;然后利用Sentinel-1 SAR数据,分析2019年3-4月洪水前后的地表变化。方法包括数据筛选、坐标转换、单位调整、时间序列处理和可视化制图,最终生成高分辨率的降水量分布图和洪水监测对比图。该技术流程实现了大规模遥感数据处理和灾害监测分析。
2025-09-06 09:00:00
22
原创 2000 年至 2022 年全球天然/半天然草地的年度概率地图数据集
全球天然/半天然草地年度概率地图(2000-2022年)以30米分辨率提供全球草地分布数据。该数据集由Landsat影像结合230万参考样本,通过机器学习生成,区分人工草地和天然/半天然草地(概率阈值分别为0.32和0.42)。数据存在部分区域低估和误分类问题,并受Landsat7条带影响。用户需注意数据限制,未来将通过Geo-Wiki平台持续改进。该数据集可用于监测草地变化,支持生态研究。
2025-09-06 07:00:00
1196
原创 GEE训练教程:基于Landsat 5的地表温度(LST)计算和可视化
该代码使用Google Earth Engine处理2004年Landsat 5影像,计算研究区域的地表温度(LST)。主要步骤包括:1)数据筛选获取低云量影像;2)热红外波段辐射定标;3)NDVI计算和植被比例估算;4)基于亮温和比辐射率计算LST;5)结果可视化与统计分析。最终输出温度分布图和区域平均温度值,实现了从遥感数据到地表温度产品的完整处理流程,为区域热环境研究提供了技术支持。
2025-09-05 16:17:27
74
原创 SatCORPS CERES GEO 版 4 Himawari-8 北半球版本 1.2
CER_GEO_Ed4_HIM08_NH_V01.2 是卫星云和辐射特性检索系统 (SatCORPS) 云和地球辐射能量系统 (CERES) 地球静止卫星 (GEO) 第 4 版北半球 (NH) 上空向日葵-8 卫星 1.2 版数据产品。数据使用向日葵-8 平台上的高级向日葵成像仪 (AHI) 仪器收集。注:1.2 版与 1.0 版相同。检索算法未做任何更改。
2025-09-05 15:55:29
878
原创 日本带状地图模式观测数据(3 米单极化)数据集
日本宇宙航空研究开发机构(JAXA)自2024年1月1日起在Google Earth Engine平台公开ALOS-2 PALSAR-2卫星的紧急观测数据,包括2024年1月1-3日和8日的3米分辨率单极化带状地图模式数据。这些2.1级数据经过正射校正处理,可用于灾害监测与分析。研究人员可通过提供的JavaScript代码调用不同日期范围的影像数据,并按照公式将DN值转换为分贝单位的反向散射系数。数据对公众免费开放,但仅限于非商业用途使用。
2025-09-05 08:30:00
360
原创 河狸水坝环境影响研究(Streamlit + Google Earth Engine)
摘要:河狸影响工具是一个基于Google Earth Engine和Sentinel-2卫星数据的网络分析平台,用于评估河狸水坝的生态效应。该工具由纽约大学团队开发,支持用户上传水坝位置坐标,自动生成对照点,并分析2018-2024年间NDVI、NDWI等生态指标的变化。通过10米分辨率卫星影像,系统可比较有水坝与无水坝区域的植被、水体指数差异,并计算月度均值。工具整合了高程掩膜、自动位置验证等功能,但受限于数据可用性,部分年份和区域的分析可能存在延迟。研究结果可为湿地恢复和生态管理提供量化依据,目前工具已
2025-09-05 08:00:00
560
原创 2000-2022年全球30米草地地图数据集
全球草地30米分辨率数据集(2000-2022年)由Land & Carbon Lab发布,包含人工草地和天然/半天然草地两类,采用Landsat影像结合机器学习方法生成。数据覆盖全球,但存在部分地区低估或误分类问题。该数据集通过随机森林算法和概率阈值划分草地类型,并提供可视化代码示例。用户在使用时需注意数据在非洲东南部、澳大利亚东部等区域的精度限制。相关成果已发表在Scientific Data期刊上。
2025-09-05 07:30:00
694
原创 GEE 案例:利用MODIS土地利用分类对sentinel-1(哨兵-1)各类别反向散射剖面图,构建箱形图方法
目录简介数据函数ee.Dictionary.fromLists(keys, values)Arguments:Returns: Dictionaryevaluate(callback)Arguments:ui.Chart(dataTable, chartType, options, view, downloadable)Arguments:Returns: ui.Chart代码结果利用GEE取土地利用的sentinel-1(哨兵-1)反向散射剖面图: 箱形图方法Sentinel-1是欧洲空间局(ESA)的一
2025-09-05 00:00:00
171
原创 GEE训练教程:MODIS MOD13Q1产品的NDVI数据进行干旱等级评价和分析
该代码基于MODIS NDVI数据实现植被干旱监测,通过计算植被状态指数(VCI)评估干旱程度。VCI根据当前NDVI值与历史极值比较得出,分为4个等级:极端干旱(VCI<20)、轻微干旱(20-35)、胁迫状态(35-50)和健康状态(≥50)。代码处理流程包括:1)加载MODIS数据;2)计算历史同期NDVI极值;3)生成VCI分类地图;4)输出区域平均VCI值。可视化结果用红-橙-黄-绿四色清晰标示不同干旱等级,示例区域平均VCI为42.61,显示植被处于胁迫状态。
2025-09-04 17:38:20
28
原创 CERES 每日白天区域平均 Terra 和 Aqua TOA 通量及相关云特性(按光学深度和有效压力分层)第 4A 版
CER_FluxByCldTyp-Day_Terra-Aqua-MODIS_Edition4A 是云和地球辐射能量系统 (CERES) 每日白天平均区域平均 Terra 和 Aqua 大气顶 (TOA) 通量和相关云特性,按光学深度和有效压力分层的 Edition4A 数据产品。数据是使用 Terra 上的 CERES 飞行模型 1 (FM1)、FM2 和中分辨率成像光谱仪 (MODIS) 以及 Aqua 上的 CERES-FM3、FM4 和 MODIS 收集的。数据收集正在进行中。
2025-09-04 17:30:53
934
原创 GEE训练教程:基于Sentinel-1 SAR卫星数据,实现对洪水事件的快速监测和严重程度评估
本文介绍了基于Google Earth Engine平台和Sentinel-1 SAR数据的洪水监测技术。该技术利用SAR数据全天候工作能力,通过分析洪水前后VV极化后向散射系数变化来识别淹没区域。处理流程包括:研究区域确定、数据筛选与预处理、影像合成与差异计算,以及基于后向散射系数变化的三级洪水严重程度分类(轻微、中等、严重)。该方法具有快速响应、客观评估和直观可视化等特点,可支持灾害应急响应、灾情评估和防灾规划等应用。文中还提供了完整的JavaScript代码实现,并提示了阈值调整和地形影响等注意事项。
2025-09-04 17:10:13
124
原创 CERES 每月格网辐射通量和云量 Terra FM1 版 2G
CER_FSW_Terra-FM1-MODIS_Edition2G 是云和地球辐射能量系统 (CERES) 月度格点辐射通量和云 Terra 飞行模型 (FM1) Edition2G 数据产品,该产品是使用 Terra 平台上的 CERES-FM1 和 CERES 扫描仪仪器收集的。该产品的数据收集已经完成。月度格点辐射通量和云 (FSW) 产品包含瞬时覆盖区计算通量的区域平均值[大气顶 (TOA)、表面和大气内(剖面)]、相关的 TOA 观测通量以及仅针对卫星过境时段的云参数。
2025-09-04 17:06:31
820
【地理信息科学】基于GEE平台的气候与地形数据融合分析:墨西哥沿海地区气温降水及高程沿程变化研究
2025-09-09
遥感技术基于Google Earth Engine的卫星影像获取系统:地理编码与Landsat数据可视化应用设计
2025-09-09
【遥感图像分析】基于Python的卫星影像分析系统测试:GEE服务与事件检测功能集成验证
2025-09-09
【遥感图像分析】基于Python与Node.js的全栈应用启动脚本:卫星影像分析系统环境配置与服务管理工具设计
2025-09-09
【地理信息处理】基于环境变量配置的GEE项目ID获取方法:遥感分析平台身份认证系统设计
2025-09-09
【地理信息处理】基于Python的Google Earth Engine认证辅助工具:环境配置与项目ID验证系统设计
2025-09-09
【地理信息科学】基于Google Earth Engine的气候地形分析:墨西哥Puerto Vallarta地区气温降水与高程关系研究
2025-09-09
【地理信息系统】基于Google Earth Engine的气候数据空间分析:墨西哥普埃托瓦亚塔至拉布法沿线温降与降水分布建模研究
2025-09-09
【地理信息系统】基于Google Earth Engine的Jalisco州数字高程模型与坡度坡向分析:多源DEM数据融合与地形可视化系统实现
2025-09-09
【遥感影像分类】基于CART算法的Sentinel-2影像土地覆盖分类:水体、农村、森林与城市区域识别模型构建与精度评估
2025-09-09
【遥感影像分类】基于Sentinel-2与NDVI的决策树模型:城市、水体、森林和农村土地覆盖分类系统设计
2025-09-09
【遥感图像处理】基于Sentinel-2多光谱数据的NDVI分类模型:土地覆盖类型识别与精度评估系统设计
2025-09-09
【遥感影像分析】基于Sentinel-2的NDVI指数与决策树分类:土地覆盖类型提取与可视化方法研究
2025-09-09
遥感监测基于Sentinel-2与Landsat-8影像的NBR指数计算:森林火灾前后植被变化分析系统设计
2025-09-09
【遥感影像分析】基于VIIRS的夜间灯光数据处理:2014至2023年区域光污染变化监测系统实现
2025-09-09
【地理信息科学】基于Google Earth Engine的分层抽样网格生成系统:城市功能区遥感监测空间采样设计
2025-09-09
【地理信息系统】基于Google Earth Engine的栅格分区算法设计:多边形网格生成与空间分析应用
2025-09-09
【遥感图像处理】基于Google Earth Engine的GeoTIFF城市建成区多分类模型:阈值分割与形态学分析在城市扩张监测中的应用
2025-09-09
【地理信息系统】基于Google Earth Engine的采样区域分割与子区域生成:遥感影像分析中的空间采样设计
2025-09-09
【地理信息系统】基于Google Earth Engine的遥感影像分析与空间采样设计:多时相遥感数据支持下的区域分块采样系统实现
2025-09-09
【地理信息系统】基于Python的多源CSV数据整合工具:市政植被覆盖时空分析数据预处理系统设计
2025-09-11
【遥感与Web开发】基于Flask与Google Earth Engine的亚马逊雨林NDVI监测系统:实现植被指数可视化与时间序列分析
2025-09-11
【遥感数据分析】基于多源遥感数据的干旱监测模型构建:气象时空特征提取与XGBoost分类应用
2025-09-10
环境遥感基于Google Earth Engine的PM2.5时空分析:利用xarray与geemap实现日月年尺度空气质量可视化系统
2025-09-10
【Python地理数据分析】基于pandas与geopandas的遥感影像处理:NDVI时序分析与滑坡预测系统实现
2025-09-10
【遥感与时间序列分析】基于NDVI时序影像的断点检测模型:亚马逊湿地生态突变点识别系统设计
2025-09-10
【遥感与地理信息】基于Landsat时序影像的NDVI年际变化分析:潘塔纳尔湿地植被动态监测系统实现
2025-09-10
遥感技术基于Google Earth Engine的卫星影像分析系统:身份验证与初始化测试脚本设计
2025-09-09
3. Retrieve and Visualize Your Data - Update.pptx
2025-09-09
【环境科学教育】基于GLOBE项目的全球环境观测系统:学生参与式科研数据采集与教学实践指南
2025-09-09
Web开发基于Next.js的API路由设计:气候数据查询系统实现与BigQuery集成
2025-09-09
Web开发基于Node.js的Next.js API路由实现:BigQuery数据库连接测试接口设计与异常处理
2025-09-09
数据分析基于BigQuery的森林损失关键指标计算:国家年度损毁面积与趋势预测API设计
2025-09-09
【地理信息系统】基于Node.js的Earth Engine连接测试接口:用于验证遥感平台API连通性与状态监控
2025-09-09
【地理信息系统】基于Google Earth Engine的森林覆盖变化分析:多国森林损失数据API接口设计与实现
2025-09-09
【地球引擎数据处理】基于Apache Beam的Xarray数据集重分块:Zarr格式遥感影像高效存储转换系统实现
2025-09-09
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人