- 博客(4140)
- 资源 (1934)
- 收藏
- 关注
原创 GEE土地分类:一文读懂精度评定—混淆矩阵confusion matrix、整体精度OA、用户者精度、生产者精度、kappa系数和F1score系数含案例
本文介绍了如何在 Google Earth Engine (GEE) 中构建和分析混淆矩阵,以评估分类模型的性能。首先,通过 ee.Array 构建混淆矩阵,并展示了如何指定自定义类标签。接着,计算了多种性能指标,包括准确率、Kappa 值、F1-score、消费者准确率和生产者准确率。此外,还演示了如何计算不同类别的 F1-score。最后,通过一个实际案例,展示了如何利用 GEE 进行土地分类,并评估分类器的性能,包括训练和验证样本的准确率、Kappa 值等指标。这些步骤帮助用户理解模型的优缺点,并进行
2025-05-25 13:00:00
2
原创 使用 GAUL 数据集在 Google Earth Engine 中创建国家级边界
使用 GAUL 数据集在 Google Earth Engine 中创建国家级边界简介本教程演示了如何使用全球行政单元层(GAUL)数据集在谷歌地球引擎(GEE)中从次国家级行政单元(Level 1)创建国家级边界(Level 0)。您将学习如何将 Level 1 行政边界聚合以创建国家级边界,处理 GEE 的限制,并使用 Python 实现替代解决方案。第一部分:了解 GAUL 数据集全球行政单元层(GAUL)数据集由联合国粮食及农业组织(FAO)开发和管理。
2025-05-25 10:00:00
2
原创 Google Earth Engine:基于MOD16A2GF中蒸散发数据ET孟加拉国的逐月降雨异常数据,并可视化了每月的降雨偏差
本文介绍了如何使用 Google Earth Engine (GEE) 分析孟加拉国的降雨异常。首先,导入国家边界数据并选择孟加拉国区域。接着,导入 MODIS 数据集中的降雨(蒸散发)数据,并计算所有年份中每个月的平均值。通过设置起始日期和创建时间序列,按月计算降雨异常值,并生成柱状图进行可视化。最后,将降雨异常数据添加到地图上,帮助理解降雨模式及其变化。该方法对气候研究和农业管理具有重要意义。
2025-05-25 09:45:00
3
原创 GEE案例分析:基于Sentinel-2 图像计算了特定月份的平均值下载和导出利用for each和map函数实现
本篇博客介绍了如何使用 Google Earth Engine (GEE) 处理 Sentinel-2 卫星图像,计算特定月份的平均值,并将结果导出到 Google Drive。首先,定义感兴趣区域 (ROI),然后通过云掩膜函数去除云层影响。接着,编写函数计算每月平均图像,并构建包含这些图像的集合。最后,将每个月的平均图像可视化并导出到 Google Drive。该方法适用于环境监测、土地利用变化分析等领域,提供了详细的代码示例和步骤说明。
2025-05-25 08:00:00
1
原创 GEE教程:LANDSAT 8 & 9 / TOA / Tier 1数据的NDVI、NDSI、NDWI、NDMI、NDGI的直方图和最大、小值统计以及下载
LANDSAT 8 & 9 / TOA / Tier 1数据的NDVI、NDSI、NDWI、NDMI、NDGI的直方图和最大、小值统计以及下载。
2025-05-24 14:30:00
13
原创 LBA-ECO CD-04 土壤呼吸,巴西塔帕若斯国家森林 83 公里塔楼场地
本数据集报告了巴西帕拉市 km 83 站点涡流通量塔附近采伐森林土壤的二氧化碳通量。自动土壤呼吸测量数据由 15 个于 2001 年 8 月安装在原始森林中的监测室收集。数据收集时间为 2001 年 12 月 19 日至 2002 年 3 月 1 日。该数据集包含一个逗号分隔的数据文件。
2025-05-24 14:23:40
452
原创 GEE森林物候监测:第一步找出2001-2023年的森林分布区域
NDVI 是通过近红外(NIR)和红光(Red)波段的反射率计算得出的,表达植被的绿度和生长状况。
2025-05-24 08:00:00
12
原创 GEE训练教程:利用MODIS的NDVI数据,分析2001年至2024年间的干旱情况,并将结果可视化和导出
本文介绍了如何使用Google Earth Engine(GEE)进行干旱监测,重点通过计算植被状况指数(VCI)来分析MODIS NDVI数据。首先,定义感兴趣区域(ROI)并加载MODIS NDVI影像集合。接着,计算NDVI的最小值和最大值,并基于这些值计算VCI。通过VCI中位数进行干旱映射,并绘制直方图以理解数据分布。随后,根据VCI值将干旱情况分类,生成干旱地图,并扩展时间范围对每幅影像进行VCI分类。最后,导出VCI图像到Google Drive,并计算干旱面积以绘制分类图表。该方法为干旱监测
2025-05-23 15:00:00
14
原创 GEE训教程:使用 Google Earth Engine 分析降水量时间序列与变化图表
首先,我们需要定义我们的研究区域(ROI)。在本示例中,我们将使用一个名为的矢量文件,并通过dt_code进行过滤。
2025-05-23 14:48:05
12
原创 LBA-ECO CD-04 土壤湿度数据,巴西塔帕若斯国家森林 83 公里塔址
本数据集报告了巴西帕拉州塔帕若斯国家森林内 83 号塔台(伐木林地)两座塔台附近 10 米深度土壤湿度和降水量的连续高分辨率频域反射测量数据。测量时间为 2002 年和 2003 年。土壤湿度和降水量数据以逗号分隔的 ASCII 文件形式提供。第一座测井塔于 2000 年 6 月在该地点一片完整的森林区域安装(“完整”测井塔),并配备了涡流通量和微气象测量仪器,并在该地区任何伐木活动开始前 15 个月投入运行(Goulden 等人,2004 年;Miller 等人,2004 年;
2025-05-23 14:43:12
553
原创 GEE APP——预测全球城市扩张对气候变化情景下的环境评估(不同的 SSP 情景下),城市扩张交互式应用
预测全球城市扩张对气候变化情景下的环境评估至关重要。然而,由于数据和计算能力的限制,现有的全球未来城市用地产品通常分辨率较低(1 公里)。这阻碍了在更精细的尺度上对全球城市发展的影响进行准确评估。因此,我们在谷歌地球引擎(GEE-CA)中开发了第一个用于模拟未来全球城市扩张的细胞自动机(CA)在线工具,它可以在不同的 SSP 情景下,以 30 米的分辨率模拟未来城市土地的变化。GEE-CA 可通过分区并行策略对未来城市用地进行高分辨率无缝模拟。
2025-05-23 08:00:00
96
原创 GEE案例:基于MODIS火灾数据,并结合气候和地形变量等多源遥感数据,评估火灾对生态环境的影响并导出矢量数据
一项全球性研究分析了过去10年影响野火分布的因素,使用Google Earth Engine(GEE)获取数据,并通过Python进行分析。研究提出了两种从多光谱卫星图像中提取野火信息的方法,旨在理解全球野火分布的驱动因素。第一种方法通过应用掩码直接提取感兴趣区域的数据,而第二种方法使用六边形瓦片提取特定区域的烧毁像素,提供了更高的灵活性和分类准确性。研究利用GEE创建了包含所有因素的图像,并通过随机森林、自适应增强等机器学习工具对烧毁和未烧毁区域进行点采样分析。研究提取了地形、气候变量(如风速、温度、降水
2025-05-23 05:30:00
23
原创 基于多源遥感和多种机器学习分类器方法(决策树、K最近邻分类、高斯朴素贝叶斯、XGBoost、LightGBM和CatBoost)分析了冰山洪水风险指标
本文介绍了如何使用多种机器学习分类器分析锡金地区的洪水风险。首先,通过数据预处理步骤,包括特征选择、缺失值处理、交互项添加、对数变换、SMOTE处理不平衡数据以及特征归一化,准备好数据集。接着,将数据集划分为训练集和测试集,并定义了包括逻辑回归、随机森林、XGBoost等在内的多个分类器。通过训练和评估这些分类器,计算了准确率、精确率、召回率和F1分数等评估指标,并将结果保存到Excel文件中。最终,本文展示了不同分类器在洪水风险预测中的表现,为后续分析提供了数据支持。
2025-05-22 23:30:00
1452
原创 GEE 训练教程——根据海拔高度阈值制作简单的二进制图层(根据指定的距离度量,返回与输入值中最近的非零值像素的距离。)
根据海拔高度阈值制作简单的二进制图层。
2025-05-22 16:34:21
25
原创 LBA-ECO CD-04 叶片的光合作用和呼吸作用,塔帕若斯国家森林:2000-2006
本数据集报告了以下测量结果:(1) 叶片光合作用响应曲线,该曲线反映了温度、叶龄、变暖、辐射和昼夜节律的影响;(2) 叶片在 30 和 37 摄氏度下的光呼吸速率。测量于 2000 年 6 月至 2006 年 2 月期间在巴西帕拉州塔帕若斯国家森林的 83 公里伐木森林塔、67 公里原始森林塔和塞卡弗洛雷斯塔的对照点进行。该数据集包含 7 个逗号分隔的 ASCII 数据文件。
2025-05-22 16:30:24
848
原创 GEE聚类分析:基于sentinel-2 影像进行 K-Means 聚类分析
这篇博客介绍了如何使用 Google Earth Engine (GEE) 进行 K-Means 聚类分析,以识别感兴趣区域(ROI)内的不同地表覆盖类型。文章详细说明了从定义用户参数、准备参考区域、加载和预处理 Sentinel-2 图像,到训练 K-Means 聚类器并对图像进行聚类的完整流程。代码示例展示了如何设置参数、采样像素数据、训练聚类器,并将结果可视化。最后,还提供了将聚类结果导出到 Google Drive 的选项。通过该教程,用户可以掌握在 GEE 平台上进行地理数据聚类分析的基本方法。
2025-05-22 10:00:00
24
原创 GEE训练教程:基于Landsat的岩石指数RI的计算和下载分析
岩石指数(Rock Index)是一种基于遥感数据的定量指标,用于评估地表岩石的分布和特征。它通过分析遥感影像中的光谱信息,提取与岩石相关的特征,帮助识别和分类岩石类型。常用的计算方法包括归一化差异岩石指数(NDRI)和岩石指数(RI),分别通过近红外与短波红外波段的差异或多个波段的光谱信息来增强岩石特征。岩石指数在地质勘探、环境监测和灾害评估中有广泛应用,能够快速、大面积地获取地表岩石信息,减少野外调查工作量。然而,其精度受遥感数据质量、大气条件和地表覆盖等因素影响,需结合实地数据进行验证。通过Googl
2025-05-21 23:46:51
18
原创 LBA-ECO CD-04 LAI 根据照片估算,塔帕若斯国家森林 83 公里塔楼遗址
该数据集包含巴西帕拉州塔帕若斯国家森林 83 公里塔楼站月度叶面积指数 (LAI) 和植物面积指数 (PAI) 的汇总数据。LAI 是根据 2000 年至 2003 年间收集的叶片半球形照片,使用直方图和间隙分数分析法估算得出的。该数据集包含两个数据文件:一个以逗号分隔的 ASCII 数据文件,其中包含每月的 LAI 和 PAI 汇总数据;另一个压缩文件 (*.zip),其中包含 2000-2001 年的半球形照片图像 (.bmp)。这些图像包括在测井前和测井后在测量地点拍摄的,用于比较 LAI。
2025-05-21 23:42:56
632
原创 GEE训练教程:使用Google Earth Engine下载和可视化了指定国家1981年至2022年的降雨量数据
本文介绍了如何使用Google Earth Engine下载和可视化1981年至2022年的降雨量数据。首先,通过定义伊朗的国家边界图层,并在该区域内随机生成7个点。接着,加载NASA的GDDP CMIP6数据集,筛选特定模型和情景的降雨量数据,并设置可视化参数以展示降雨量变化。随后,通过遍历每一年和每个月,计算每月的降雨总和,并生成每月影像集合。最后,对研究区域进行区域统计,计算每个点的平均降雨量,并将结果导出为CSV文件到Google Drive。该方法为气候研究提供了强大的工具,帮助更好地理解气候变化
2025-05-21 19:30:00
17
原创 Google Earth Engine :基于sentinel-2数据计算NDWI并进行不同时间段的冰川湖及其环境特征分析
本文介绍了如何使用 Google Earth Engine (GEE) 分析锡金地区的冰川湖及其环境特征。通过定义锡金地区边界、应用云掩膜处理 Sentinel-2 数据、计算归一化差异水体指数 (NDWI) 提取水体,并结合历史冰川湖数据、海拔、坡度及历史洪水范围,深入分析了该地区的水体变化及其影响。最终,提取的数据被导出为 CSV 文件,并生成了当前冰川湖的地图,为未来的研究和决策提供了重要数据支持。
2025-05-21 17:30:00
21
原创 GEE训练教程:基于sentinel-2影像计算NDWI的探测冰川水体和而可视化分析
本文介绍了如何利用 Google Earth Engine (GEE) 分析锡金地区的冰川湖及其环境特征。通过定义锡金地区的边界、应用云掩膜处理 Sentinel-2 数据、计算归一化差异水体指数 (NDWI)、提取水体、添加海拔、坡度和土地覆盖数据,并结合历史冰川湖数据,我们生成了一个综合数据集。最终,该数据集被导出以便进一步分析。这些步骤为理解锡金地区的水体变化及其环境影响提供了重要数据支持,并为未来研究和决策奠定了基础。
2025-05-21 15:30:00
19
原创 GEE教程:多源遥感特征提取-环境特征括海拔、坡度、NDWI(归一化差异水体指数)、土地覆盖、冰川接近度以及历史洪水发生情况
本文介绍了如何使用 Google Earth Engine (GEE) 分析印度锡金地区的环境特征。通过定义感兴趣区域,获取并处理海拔、坡度、NDWI(归一化差异水体指数)、土地覆盖、冰川接近度以及历史洪水发生等数据,我们能够全面了解该地区的地理特征和水资源状况。文章详细展示了从数据获取、处理到可视化的完整流程,并最终将数据导出为 CSV 文件,为后续的机器学习模型提供支持。这一分析不仅有助于环境研究,也为该地区的灾害风险评估提供了重要数据基础。
2025-05-21 09:45:00
23
原创 GEE图表:使用 Google Earth Engine (GEE) 来监测指定地区的二氧化氮(NO₂)月度浓度趋势
本博客介绍了如何使用 Google Earth Engine (GEE) 监测印度乌代布尔地区的二氧化氮(NO₂)月度浓度趋势。首先,通过定义感兴趣区域(AOI)并加载乌代布尔的边界数据。接着,创建月份名称列表和年份范围(2019-2024),并编写函数计算每个月的 NO₂ 平均值。该函数通过过滤遥感数据、计算月均浓度,并将结果转换为 µg/m³ 单位。最后,使用 GEE 的图表功能生成 NO₂ 月度趋势图,帮助分析空气质量变化。这种方法为环境监测和政策制定提供了有力支持。
2025-05-21 08:00:00
233
原创 GEE训练教程:基于兴趣点poi的超大规模土地利用建模框架
基于兴趣点的超大规模土地利用建模框架基于兴趣点的土地利用建模框架是一种通过利用兴趣点(POI)数据来表征不同空间尺度和语义粒度的土地利用模式的方法。该方法由橡树岭国家实验室的研究人员开发,使用神经网络语言模型将兴趣区域(AOI)转换为高维嵌入。该框架将兴趣点(POI)的空间分布和语义属性集成到 AOI 中,以捕捉其土地利用特征。通过将兴趣点与道路网络层次结构相结合,并结合基于 OSM 标签的语义表示,这种方法为跨不同地理环境的大规模土地利用建模提供了一种可扩展的解决方案。框架组件数据集详情。
2025-05-20 22:21:52
20
原创 LBA-ECO CD-04 叶面积指数,83 公里塔楼站点,塔帕若斯国家森林,巴西
叶面积指数是在巴西帕拉州塔帕若斯国家森林 83 公里处的伐木塔点的一块 18 公顷地块中估算的。该地块毗邻位于巴西帕拉州塔帕若斯国家森林 83 公里处的涡流通量塔。在这块 18 公顷地块中,沿着两条东西向横断面,以 25 米的间隔放置了 30 个枯枝落叶收集器。每两周从收集器中收集枯枝落叶样本,并送回实验室进行分类、风干和称重。使用计算机扫描仪和图像处理软件测定风干叶片子样本的叶面积。然后将子样本放入烤箱烘干,并将风干重量校正为烘干重量。
2025-05-20 22:16:21
807
原创 GEE土地分类:Google Earth Engine 进行非监督土地覆盖分类(k-means,、CascadeKMeans、wekaLVQ和wekaXMeans聚类分析)和 时序的NDVI 分析
本文介绍了四种聚类算法(K-Means、CascadeKMeans、WekaLVQ 和 WekaXMeans)的原理、优缺点及适用场景,并通过 Google Earth Engine 平台展示了这些算法在土地覆盖分类和 NDVI 分析中的应用。K-Means 适合处理简单且均匀分布的数据,CascadeKMeans 通过分层聚类提高大规模数据处理的效率,WekaLVQ 适合非线性可分数据,WekaXMeans 则自动选择最佳簇数量,适合复杂数据集。文章还详细描述了如何使用 GEE 加载气候数据、训练模型、进
2025-05-20 08:30:00
250
原创 GEE 案例:计算黄河流域内土壤湿度和降水量的异常情况
本文介绍了如何使用Google Earth Engine (GEE)分析土壤湿度和降水量的异常情况,以识别干旱事件。主要步骤包括:导入流域边界和关键数据集(NASA-USDA Enhanced SMAP土壤湿度数据集和GPM IMERG月度降水数据集),定义研究时间段,处理数据(如单位转换和异常值计算),并绘制异常值时间序列图。通过计算土壤湿度和降水量与多年平均值的偏差,可以在地面数据有限的地区进行水文状况分析,识别持续的负异常时期,这些时期通常与干旱事件相关。
2025-05-20 08:00:00
387
原创 Google Earth Engine :分析锡金地区的多个地理特征,包括海拔、冰川湖、历史性洪水、冰川、土地覆盖和坡度
本文介绍了如何使用 Google Earth Engine (GEE) 分析印度锡金地区的地理特征。首先,通过 GEE 的功能集合定义了锡金的地理边界,并设置了地图中心。接着,利用 SRTM 数字高程模型获取并可视化了该地区的海拔数据。随后,使用 Sentinel-2 卫星影像和归一化差异水体指数 (NDWI) 检测了冰川湖,并通过全球河流流量数据集分析了历史性洪水。此外,还利用 RGI 数据集获取了冰川信息,并通过 ESA 世界覆盖 2020 数据集分析了土地覆盖情况。最后,计算并可视化了锡金地区的坡度。
2025-05-20 07:00:00
22
原创 GEE训练教程:Google Earth Engine 进行城市热岛效应分析(地表温度分析),分屏展示不同时间的地表温度
本文介绍了如何使用 Google Earth Engine (GEE) 分析城市热岛效应 (UHI)。首先,定义感兴趣区域(如西班牙),并通过云掩膜函数提高影像质量。接着,加载 Landsat 数据,计算地表温度 (LST) 和归一化水体指数 (NDWI),并进一步计算发射率和热波段。通过表达式计算 LST,并可视化结果。最后,计算城市热岛效应 (UHI),并比较不同年份(如2015年和2024年)的数据。该方法能够有效分析城市热岛效应的时空变化,为城市规划提供科学依据。
2025-05-20 04:00:00
141
原创 LBA-ECO CD-04 树木测量学,巴西塔帕若斯国家森林 83 公里塔楼遗址
在实施减少影响的伐木管理制度后的四年里,在巴西帕拉州塔帕若斯国家森林 km83 处的伐木森林塔点进行了一项树木测量学研究。安装了树木测量带,以测量 km83 处涡流通量塔附近 18 公顷地块中 234 棵树的直径生长增量。除了伐木前在地块内随机选择进行测量的树木外,2002 年还在研究中加入了一组在伐木处理过程中留下的林隙内或附近的小直径树木。选择性伐木是亚马逊河流域的主要土地利用方式。要准确核算伐木对区域碳平衡的影响,需要更多关于伐木森林恢复生物量的速率的信息。此数据集有一个逗号分隔的数据文件。
2025-05-19 13:27:52
999
原创 GEE APP——生成多模态时间序列数据集(MMTS-GEE 旨在高效生成用于多模态和多时序分析或各种机器学习任务的综合数据集)
MMTS-GEE 是一个基于 Google Earth Engine (GEE) 的工具,用于生成多模态时间序列数据集,结合了 Sentinel-1 SAR 数据、Sentinel-2 多光谱数据、ERA5-Land 气候变量和 Copernicus DEM 地形特征。该工具通过集成多种遥感数据,支持森林监测、土地覆盖分析和生物物理参数提取。用户可以通过自定义时间范围、土地覆盖类型、随机点生成等设置,灵活生成符合研究需求的数据集。代码提供了数据预处理、植被指数计算、斑点滤波等功能,并支持将结果导出为 CSV
2025-05-19 09:00:00
118
原创 GEE案例:基于Google Earth Engine的RUSLE土壤侵蚀模型实现与分析(恒河缓冲区)
加载各种输入数据(降水、土壤、地形、植被等)计算RUSLE的五个因子(R、K、LS、C、P)综合计算土壤流失量对结果进行分类和可视化导出计算结果和添加图例RUSLE模型公式为:A = R × K × LS × C × PA: 土壤流失量(t/ha/yr)R: 降雨侵蚀力因子K: 土壤可蚀性因子LS: 地形因子(坡长和坡度)C: 植被覆盖因子P: 水土保持措施因子该代码适用于评估特定区域的土壤侵蚀风险,可用于土地管理和水土保持规划。## 结果!
2025-05-19 08:00:00
354
原创 GEE案例——利用基于高程、坡度、土地利用、降雨量和水体分布等数据进行洪水风险评估(洪水风险指数)
本文介绍了如何利用 Google Earth Engine (GEE) 进行洪水风险评估。通过整合高程、坡度、土地利用、降雨量和水体分布等数据,构建了一个洪水风险指数模型。具体步骤包括:定义感兴趣区域(AOI)、获取高程和坡度信息、获取土地利用数据、计算降雨量、计算距离水体的距离、归一化各图层数据,并最终加权叠加生成洪水风险指数。此外,还添加了图例和标题以增强地图的可读性。该模型为洪水风险评估提供了有效工具,支持相关决策制定。
2025-05-18 16:30:00
23
原创 GEE APP——一种基于遥感技术的实际蒸散量制图的多模型方法 (ETMapper-GEE)
Google Earth Engine (ETMapper-GEE) 是一种基于遥感技术的多模型方法,用于精确估算实际蒸散量(ETa),这对于大规模水资源管理至关重要。该工具利用 Landsat 卫星数据,结合四种模型(SEBAL、METRIC、TriAng 和 SSEBop)进行遥感蒸散量估算,并整合了外推方法和气候强迫数据集。在德国通量塔观测数据上的评估显示,EF 方法优于 ETF 方法,TriAng 模型表现最佳。使用 ETo 和 ERA5 强制数据显著提高了估算精度。ETMapper-GEE 提供了
2025-05-18 16:00:00
22
原创 LBA-ECO CD-04 二氧化碳剖面图,塔帕若斯国家森林 83 公里塔址
在巴西帕拉州圣塔伦市塔帕若斯国家森林,83公里长的伐木塔点,测量了高达64米,12个高度的大气二氧化碳浓度剖面。数据收集于2000年6月至2004年3月的三年半期间。红外气体分析仪每48分钟连续测量一次塔上12个高度(距地面0.1、0.35、0.7、1.4、3、6、10.7、20、35、40、50、64米)的二氧化碳浓度。数据以30分钟为间隔报告,并保存在一个逗号分隔的文件中。
2025-05-18 09:18:11
567
原创 GEE 土地分类:向样本添加时间序列属性以加快加载速度
向样本添加时间序列属性以加快加载速度。该脚本提取集合中点的时间序列,使用reduceRegion函数。如果用于创建参考时间序列或中断收集器工具GLANCE,输入特征集合必须有一个唯一的标识符 点,在名为“id”的属性中(区分大小写)
2025-05-18 08:00:00
139
原创 GEE教程:基于MCD64A1数据提取BAI值并导出为CSV文件(之提取至点)
接下来,我们定义一个函数addBAI// 获取年份// 获取前一年// 定义前一年开始日期// 定义当前年份结束日期// 创建一个点几何对象var baiCollection = ee.ImageCollection('MODIS/006/MCD64A1') // 加载MODIS的烧毁日期数据集.filterDate(start, end) // 根据定义的时间范围过滤数据// 选择“BurnDate”波段。
2025-05-17 17:54:36
16
1
原创 LBA-ECO CD-03 通量气象数据,巴西帕拉县 77 公里牧场:2000-2005 年
涡流相关和微气象测量始于 2001 年并持续到 2005 年,测量地点位于巴西帕拉州圣塔伦市南部 BR-163 公路 77 公里处的牧场。测量包括使用涡流协方差 (EC) 方法测量的湍流通量(动量、热量、水蒸气和二氧化碳)。其他测量包括二氧化碳廓线、气温、湿度、风速廓线、向下和向上的太阳和地面辐射、向下和向上的光合有效辐射 (PAR)、大气压力、降雨量、土壤温度、土壤湿度和土壤热通量。数据以 5 个逗号分隔的 ASCII 值 (csv) 文件呈现,每个文件大致对应一个日历年。
2025-05-17 17:49:55
900
Multispectral_Functions_Examples.ipynb
2025-05-24
【地理信息系统】基于Python的GEE遥感影像处理脚本:集合拼接与可视化参数获取功能实现
2025-05-24
【遥感影像处理】基于Python的Earth Engine图像可视化参数设置:卫星影像多光谱指数显示配置系统设计
2025-05-24
【遥感与地理信息系统】基于Google Earth Engine的Sentinel-2影像处理工具:多光谱指数计算与图像过滤系统设计处理ESA Sentinel-2
2025-05-24
【遥感与地理信息系统】基于Google Earth Engine的Sentinel-1 SAR数据处理类:Python中实现多时相雷达影像的过滤、镶嵌、统计分析及去斑处理
2025-05-24
【遥感与地理信息系统】基于Google Earth Engine的多光谱Landsat影像处理工具集:支持多时相滤波、云掩膜及光谱指数计算等应用
2025-05-24
【地理信息系统】GEE图像可视化配色方案函数设计:提供多种颜色主题用于地球引擎影像显示参数配置
2025-05-24
【遥感影像处理】基于Google Earth Engine的影像集合拼接与按日期马赛克处理:影像数据融合与处理方法实现
2025-05-24
【遥感影像处理】基于Google Earth Engine的Landsat 8与Sentinel-2云掩膜及可视化:影像集合处理与导出系统设计文档的主要内容
2025-05-24
【地球引擎遥感】Landsat 8云掩膜与影像合成:基于Google Earth Engine的云去除及可视化处理脚本
2025-05-24
地球引擎Sentinel-2地表反射率影像云层掩膜与可视化和下载RGB:基于GEE脚本的遥感图像处理与分析系统设计
2025-05-24
【地球观测与遥感技术】基于Sentinel-2影像的地形校正与燃烧严重程度分析:快速研究区域的NDVI和燃烧比率计算
2025-05-24
【地球科学与遥感】基于Google Earth Engine的Landsat 7影像分析:佩ayette流域扫描线校正及地表分类系统构建
2025-05-24
【遥感与地理信息系统】基于Google Earth Engine的Landsat 8影像处理与分类:流域内土地覆盖变化分析系统设计处理和分析
2025-05-24
【地理信息系统与遥感】基于Google Earth Engine的Landsat 5影像处理与分类:佩ayette流域土地覆盖变化分析及雪盖监测系统设计利用Google Earth Engine
2025-05-24
地球科学基于Google Earth Engine的多代理系统设计:环境数据搜索与分析工具开发
2025-05-24
【地球引擎与Python编程】基于Colab的Earth Engine Companion交互式地理空间任务处理系统设计:通过Gemini API实现逐步代码执行与验证
2025-05-24
【地球科学与遥感】基于大型语言模型的Earth Engine代码生成与图像分析:自动化地理信息可视化系统设计
2025-05-24
【地球引擎与地理信息系统】基于Gemini模型的地球图像分析与可视化系统设计:交互式地图与图像处理功能实现
2025-05-24
【地理信息系统】基于Google Earth Engine的荷兰地表温度分析:数据处理与可视化脚本实现
2025-05-21
【地理信息系统】基于Google Earth Engine的土地覆盖分类:多光谱影像处理与随机森林模型应用
2025-05-21
【地理信息系统】基于Google Earth Engine的南苏丹岩石指数计算与可视化:遥感影像处理及导出系统设计
2025-05-21
【地理信息系统】基于GeoPandas的火灾配置文件生成:火灾数据处理与时间缓冲设置
2025-05-21
【Google Drive API】基于Python的Google云端硬盘文件下载系统:批量下载指定文件夹内容至本地存储
2025-05-21
【地理空间数据分析】基于Google Earth Engine的越南城市与植被动态变化分析:2024年卫星图像与指数可视化系统设计
2025-05-25
【地理信息系统】基于Google Earth Engine的城市绿地空间分析:印度尼西亚城市Sentinel-2 EVI估算与建筑邻近性分析
2025-05-25
【地理信息系统】基于Google Earth Engine的印度尼西亚干旱监测:2024年VCI、TCI和DSI指数计算与时间序列可视化
2025-05-25
【地理信息系统】基于Google Earth Engine的洪水监测与损害评估:使用Sentinel-1 SAR和GHS人口数据进行区域影响分析
2025-05-25
Air Quality Assessment over New Delhi
2025-05-25
【地理信息系统】基于Google Earth Engine的国家行政区划边界数据处理:获取并可视化指定国家的一级行政区信息
2025-05-24
【地理信息系统】基于Google Earth Engine的多灾害风险评估:水域检测与地形分析综合系统设计
2025-05-24
【地理信息系统】基于GEE的栅格数据处理与统计分析:灵活选择行政边界并计算区域统计数据
2025-05-24
【地理信息系统】基于Google Earth Engine的行政区划边界可视化:国家至市镇层级地图展示系统设计
2025-05-24
【地理信息系统】基于Google Earth Engine的洪水易发区识别:结合SAR影像和地形数据分析的系统实现
2025-05-24
【地理信息系统】基于Google Earth Engine的夜间灯光影像处理与对比:2017年5月和2020年5月平均辐射数据提取与可视化
2025-05-24
【地球引擎应用】基于Python的苏丹作物休耕检测系统设计和代码全解
2025-05-24
Palettes_and_Visualization.ipynb
2025-05-24
S1_SAR_Backscatter_Basic_Usage.ipynb
2025-05-24
Image_Collections_&_Useful_Operations.ipynb
2025-05-24
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人