自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

此星光明博客

地理信息和卫星遥感云计算专业指导

  • 博客(4095)
  • 资源 (1934)
  • 收藏
  • 关注

原创 GEE问题:影像面积统计的时候出现面积等于0(area=0)该如何解决?

在Google Earth Engine (GEE)中进行面积统计时,可能会遇到统计结果为0的情况,即使加载的MASK影像显示有数据。这通常是因为使用了reduceRegion函数,并且MASK影像的值为0。为了解决这个问题,可以通过对MASK影像进行处理,使其值不为0。例如,可以使用add函数将MASK影像的值增加1,然后再进行统计。此外,在进行面积统计时,如果未指定geometry参数,系统会报错,因为需要明确统计的区域边界。因此,必须在使用reduceRegion时提供geometry参数,以确保统计

2025-05-16 09:30:00 231

原创 GEE生物量碳密度:基于多源遥感数据,实现海南区域生物量碳密度的时空特征分析和可视化。

通过本方法,可快速获取区域尺度的生物量碳密度分布特征,为应对气候变化提供关键数据支持。完整代码链接(https://code.earthengine.google.com/ba4cb1f52477a2e4e94e526f03cbb9eb),欢迎交流改进。本文以海南岛为研究对象,利用Google Earth Engine平台,整合多源遥感数据,实现区域生物量碳密度的时空特征分析。本方法可为热带岛屿生态系统碳汇评估提供技术支撑。

2025-05-16 08:00:00 4

原创 GEE案例:基于Sentinel-1 GRD数据的葡萄牙里斯本区域的洪水风险预测

本文分析了一个基于Google Earth Engine (GEE)平台的洪水监测与评估脚本。该脚本通过处理Sentinel-1 SAR数据,分析洪水前后的地表变化,评估受影响区域的洪水范围及其对人口、农田和城市的影响。主要步骤包括:设置日期和SAR参数、加载和预处理数据、计算洪水范围和面积、评估受影响的土地和人口,并将结果可视化。脚本通过一系列图像处理和分析算法,生成洪水掩膜、计算暴露人口数量、受影响的农田和城市面积,最终将结果显示在地图上,并添加图例以便于理解。该脚本为洪水灾害的快速监测和评估提供了有效

2025-05-15 17:15:00 11 1

原创 GEE案例:分析和可视化车辆电池(包括电动和普通)由于城市地区地表温度(LST)而面临潜在风险

本存储库提供了一套基于谷歌地球引擎(GEE)的代码,用于分析和可视化城市道路中车辆电池(包括电动和普通)因地表温度(LST)而面临的潜在风险。代码通过处理Landsat 8和9的影像数据,计算地表温度,并结合官方县界和道路网络数据,识别出道路温度可能对电池构成风险的区域。主要功能包括城市边界定义、LST数据处理、道路温度分析、电池风险分类、空间可视化以及数据导出。用户可通过调整日期范围和温度阈值,自定义分析条件,并生成风险地图和CSV文件,便于进一步研究和决策。该工具为城市规划和车辆管理提供了科学依据,帮助

2025-05-15 14:28:38 376

原创 GEE 训练教——利用MODIS MOD16A2数据ET(蒸散发数据)的时序图表分析

GEE 训练教——利用MODIS MOD16A2数据ET(蒸散发数据)的时序图表分析MODIS MOD16A2数据是美国国家航空航天局(NASA)的MODIS传感器所获取的陆地蒸散发和植被蒸腾量数据。该数据集提供了全球范围内每日和年度的蒸散发和植被蒸腾量数据,以及其他相关的地表水文过程数据。MOD16A2数据基于多种遥感数据和模型算法,可以用于监测陆地的水分循环和蒸散发过程。

2025-05-15 13:33:14 21

原创 美国宇航局 CDDIS 提供的地面多普勒卫星轨道摄影和无线电定位 (DORIS) 地球定向参数时间序列产品

卫星综合多普勒轨道测绘与无线电定位 (DORIS) 地球定向参数时间序列产品,源自美国宇航局地壳动力学数据信息系统 (CDDIS)。DORIS 是一个双频多普勒系统,由卫星上的接收器和全球分布的地面信标网络组成。轨道卫星上的 DORIS 接收器跟踪地面信标网络发射的双频无线电信号并生成 DORIS 数据。当卫星轨道经过地面信标时,会测量多普勒频移或绝对相位。DORIS 数据记录包含带时间标记的距离率测量值及其相关辅助信息。来自全球网络的 DORIS 观测数据可用于多种产品。

2025-05-15 13:27:37 287

原创 Google Earth Engine (GEE) :通过Landsat 8影像来分析城市热应激(UHI)区域——英国伦敦为例

本文介绍了如何利用Google Earth Engine (GEE)平台和Landsat 8影像分析城市热应激区域。首先,定义感兴趣区域并筛选符合条件的Landsat影像,计算土地表面温度(LST)。接着,提取城市区域的LST数据,并进行统计分析。通过随机森林算法训练分类器,将区域分为低、中、高和极端热应激等级,最终可视化分类结果。该方法为城市规划和环境管理提供了有效的遥感数据分析支持。

2025-05-15 09:00:00 82

原创 GEE数据集:美国火灾数据集LANDFIRE(LF)景观火灾和资源管理规划工具

LANDFIRE(LF),景观火灾和资源管理规划工具,是美国农业部林务局、美国内政部地质调查局和自然资源保护协会共同开展的项目。LANDFIRE (LF) 图层是基于广泛的实地参照数据、卫星影像和生物物理梯度层,使用分类和回归树构建的预测景观模型创建的。您可以在这里阅读 Landfire 2023 的更新信息。LANDFIRE 2023 更新(LF 2023)代表了持续向年度更新和降低延迟目标迈进的重要一步。

2025-05-15 08:00:00 628

原创 GEE教程:如何利用 GEE 的强大功能来分析和展示土壤特性(OpenLandMap/SOL/SOL_TEXTURE-CLASS_USDA-TT_M/v02数据)并且可视化土壤深度

接下来,我们定义可视化参数,以便在地图上清晰地显示土壤纹理类别。我们将选择一个调色板,并设置最小值和最大值,以适应土壤纹理类别的范围。min: 1.0,max: 12.0,我们将研究区域设置为整个印度。可以使用现成的矢量文件来定义该区域。我们为不同深度的土壤纹理定义调色板和名称,以便在图例中显示。

2025-05-14 19:10:37 12 1

原创 巴西亚马逊地区树叶和大气二氧化碳中的 LBA-ECO CD-02 碳和氮同位素

本数据集记录了2004年和2006年旱季期间,在巴西亚马逊州马瑙斯附近的INPA ZF2保护区进行的叶片组织和大气CO2的13C/12C、15N/14N比值及碳氮浓度的研究。数据包括三个CSV文件:大气气体样本的13C数据、叶片样本的13C和15N数据,以及气象和CO2通量数据。研究在冠层不同高度采集叶片样本,并在三个位置的不同高度采集大气空气样本。此外,还包含来自高原KM34塔的同步气象、大气CO2和CO2通量测量数据。数据集提供了详细的样本采集信息、测量方法和数据格式,为研究亚马逊森林碳氮循环提供了重要

2025-05-14 19:06:05 562

原创 GEE土地分类:利用Hansen全球森林数据统计指定缓冲区内的的森林与非森林面积

本文介绍了如何利用Google Earth Engine (GEE) 平台分析阿尔及利亚Sidi Abdallah地区的森林与非森林数据。通过定义感兴趣区域(ROI),加载Hansen全球森林变化数据集,计算当前森林覆盖,并创建森林/非森林分类图层,文章详细展示了数据处理流程。此外,文章还介绍了如何添加高分辨率Sentinel-2影像、计算区域统计数据、导出分类图和NDVI数据,最终为森林管理和环境保护提供了重要支持。

2025-05-14 09:00:00 14

原创 GEE图表:基于ERA5 气候数据来计算特定区域内的温度变化和时序图表

首先,我们需要定义一个研究区域。我们使用一个多边形来表示该区域。})]);

2025-05-14 08:00:00 445

原创 GEE 训练教程——使用 paint() 将矢量几何图形转换为图像

使用 paint() 将矢量几何图形转换为图像。* 这会生成一条 “瘦 ”线,用 8 邻域表示。* 此外,所有特征都将在像素中具有相同(指定)的数值。* 图像分辨率以像素为单位(即不指定比例)。

2025-05-13 11:40:31 112 1

原创 LBA-ECO CD-02 亚马逊大气二氧化碳中的碳和氧同位素:1999-2004

该数据集记录了1999年至2004年间在亚马逊流域多个森林、牧场及自由对流层收集的大气二氧化碳(CO2)的碳氧稳定同位素比值。数据包括三个ASCII文件,分别记录了森林、牧场和对流层的CO2浓度及同位素特征。采样地点覆盖亚马逊州、帕拉州和朗多尼亚州,采样时间包括白天和夜间。2003年5月,飞机在亚马逊河/塔帕若斯河等区域进行了五天飞行,采集了对流层CO2样本。数据通过分析CO2的碳氧同位素比值,监测了陆地生态系统的碳交换过程,特别是环境条件变化和土地利用变化对生态系统同位素鉴别的影响。该研究对于理解陆地生态

2025-05-13 11:31:21 726

原创 GEE 图表:使用GEE处理MODIS MCD19A2数据,并导出2023年季节性平均AOD数据并可视化对比047和055波段的时序差异

首先,我们定义研究区域(AOI),并将地图居中显示在该区域。通过以上步骤,您可以轻松地使用GEE处理MODIS MCD19A2数据,并导出2023年季节性平均AOD数据。这些数据可以用于气候研究、空气质量监测等领域。如果有任何问题,欢迎随时联系作者。

2025-05-13 08:00:00 263

原创 GEE数据提取:提取特定区域的CHIRPS降水数据,并将结果导出为CSV文件

首先,我们需要定义一个感兴趣的地理位置。// 边界城市在这段代码中,我们使用定义了一个点,并通过方法从城市边界数据集中筛选出与该点相交的城市边界。接下来,我们需要定义我们感兴趣的时间范围。//--------时间-------------------------------------------------------通过以上步骤,我们成功地使用Google Earth Engine提取了特定区域的降水数据,并将结果导出为CSV文件。这一过程展示了GEE在气候数据分析中的强大能力。

2025-05-12 12:53:31 32 1

原创 亚马逊盆地塔帕若斯河与亚马逊河交汇处气象数据集分析

该数据集包含 2001 年 7 月和 8 月在巴西圣塔伦附近亚马逊盆地塔帕若斯河与亚马逊河交汇处附近收集的气象数据。边界层和高空测量数据由声学测深仪-声雷达仪、带光学经纬仪的探空气球和无线电探空仪收集。无线电探空仪除了测量风速和风向外,还测量了气压、温度和相对湿度。测量数据由五个当地站以不同的频率进行。该数据集包含 41 个逗号分隔的数据文件。数据集附带的支持信息包括:天气预报:天气预报用于确定 CIRSAN 实验期间气球飞行的有利条件,并帮助确定无线电探空仪的发射频率。

2025-05-12 12:46:55 646

原创 GEE APP——第一个用于模拟未来全球城市扩张的细胞自动机(CA)在线工具,它可以在不同的 SSP 情景下,以 30 米的分辨率模拟未来城市土地的变化(分屏可拖动)

预测全球城市扩张对气候变化情景下的环境评估至关重要。然而,由于数据和计算能力的限制,现有的全球未来城市用地产品通常分辨率较低(1 公里)。这阻碍了在更精细的尺度上对全球城市发展的影响进行准确评估。因此,我们在谷歌地球引擎(GEE-CA)中开发了第一个用于模拟未来全球城市扩张的细胞自动机(CA)在线工具,它可以在不同的 SSP 情景下,以 30 米的分辨率模拟未来城市土地的变化。GEE-CA 可通过分区并行策略对未来城市用地进行高分辨率无缝模拟。

2025-05-12 08:00:00 400

原创 GEE教程:基于MODIS的地表温度(LST)数据,并生成一个动画GIF

首先,我们需要定义一个感兴趣的区域。我们将使用一个点和一个多边形来表示该区域。region =接下来,我们从FAO的GAUL数据集中加载国家边界,并将其添加到地图上。// 将国家边界添加到地图我们定义LST的可视化参数,以便为动画帧创建可视化图像。min: 13000, // 根据开尔文调整LST范围max: 16500, // 根据开尔文调整LST范围palette: ['D70404'],

2025-05-11 13:39:04 30 1

原创 GEE图表分析:指定面积NDWI水体面积变化分析

首先,我们需要定义一个多边形区域,作为我们分析的基础。[76.68656121150454, 12.595724516920036] // 闭合多边形// 将ROI添加到地图上// 将地图中心移动到ROI通过以上步骤,我们成功地定义了感兴趣区域,加载了MODIS影像数据,计算了NDWI,并估算了湖泊面积随时间的变化。这些分析为我们理解内蒙古河口镇的水体变化提供了重要的科学依据。希望这篇博客能够帮助您更好地利用Google Earth Engine进行环境监测和分析!定义感兴趣区域。

2025-05-11 08:00:00 327

原创 GEE教程——使用 Google Earth Engine 成功地分析了特定区域的土壤容重,并可视化了不同深度的土壤数据

/ 你可以使用城市边界,并仅针对你的城市运行此代码在这段代码中,我们使用一个点的坐标来确定国家边界,并将其添加到地图上。print('统计信息 for ' + name, stat);});通过以上步骤,我们使用 Google Earth Engine 成功地分析了特定区域的土壤容重,并可视化了不同深度的土壤数据。最终,我们还创建了一个图例,以帮助用户更好地理解可视化结果。

2025-05-10 13:16:32 31 1

原创 CARVE:阿拉斯加 CARVE 飞机飞行视频,2012-2015 年

CARVE(北极水库碳脆弱性实验)是NASA在2012年至2015年间进行的一项关键研究,旨在通过飞机观测和地面测量,深入理解阿拉斯加北极地区陆地生态系统的碳循环及其与气候变化的相互作用。该实验通过高频率的季节性飞行活动,收集了从局部到区域尺度的温室气体数据,并利用先进的遥感技术和模型,量化了北极地区的碳通量。CARVE不仅填补了地球科学领域的重要知识空白,还支持了NASA在碳循环、生态系统、大气成分及气候变化等核心研究领域的目标。此外,CARVE的数据增强了现有NASA及非NASA传感器的科学价值,为全球

2025-05-10 13:10:42 467

原创 GEE案例:基于sentinel-2影像的Sigmoid函数和线性回归模型对红边光谱区域的反射率进行了模拟和分析(区分地物)

Sigmoid函数的形式为:(f_{max}) 是最大反射率。(k) 是反射率变化的速率。(x_0) 是变化率最大时的中心波长(拐点)。为了使用线性回归,我们将Sigmoid函数进行转换,得到:其中 (y = f(x)),这使得我们可以利用线性代数中的方法来拟合参数模型。接下来,我们定义需要分析的波段和相应的中心波长。需要注意的是,B8波段被排除,因为其带宽较宽且通常低于B7波段。// 波段中心波长(单位:微米)

2025-05-10 08:00:00 31

原创 GEE教程:使用Google Earth Engine提取了特定区域的风速数据,并将结果导出为CSV文件

首先,我们需要定义一个感兴趣的地理位置。// 边界城市在这段代码中,我们使用定义了一个点,并通过方法从城市边界数据集中筛选出与该点相交的城市边界。接下来,我们需要定义我们感兴趣的时间范围。通过以上步骤,我们成功地使用Google Earth Engine提取了特定区域的风速数据,并将结果导出为CSV文件。这一过程展示了GEE在气候数据分析中的强大能力。希望这篇博客对您在使用GEE时有所帮助!如果您有任何问题或建议,欢迎在评论区留言。

2025-05-09 15:35:59 43 1

原创 CARVE:每日飞行报告,2012-2015

CARVE: Daily Flight Reports, 2012-2015 数据集详细记录了北极碳库脆弱性实验(CARVE)在阿拉斯加和加拿大北极地区进行的空中飞行活动。该数据集包含134个PDF文件,每个文件约30张幻灯片,提供了飞行路径、高度、风向、天气条件、红外和可见光图像,以及大气气体浓度的初步分析。飞行活动在2012年至2015年的3月至11月期间进行,旨在研究大气气体含量的季节和年际变化,对理解北极碳循环及永久冻土融化的潜在威胁至关重要。数据集的空间覆盖范围为阿拉斯加和加拿大北极地区,时间跨度

2025-05-09 15:32:34 431

原创 GEE图表分析:使用Google Earth Engine分析指定区域的2024年的NDVI和LST

首先,我们定义研究区域(AOI),这里以墨西哥城为例。将AOI添加到地图上,并将地图中心定位到该区域。通过上述步骤,我们成功地使用Google Earth Engine分析了2024年的NDVI和LST。我们定义了研究区域。

2025-05-09 08:00:00 238

原创 GEE下载问题:同时设置不同文件名称,但是下载下来不错乱(不按照设定的名称下载)

我正在尝试使用 Google Earth Engine 导出 Sentinel-2 植被指数和纹理特征,这些特征是在点上进行采样的。由于我有很多点和特征,所以我不是一次性导出所有点的所有特征,而是在循环中逐个导出每个点的特征。问题:尽管我在 Export.table.toDrive 中设置了 folder='S2_textures',但地球引擎每次都会在我的 Google Drive 中创建一个新的名为 S2_textures 的文件夹。

2025-05-09 05:00:00 562

原创 GEE案例:基于1984-2022年结合NDVI数据和时间序列分析,识别和清理煤矿开采区域并将结果可视化并导出

这段代码利用遥感技术,结合NDVI数据和时间序列分析,识别和清理煤矿开采区域,确保数据的准确性和可靠性,最终将结果可视化并导出。该方法适用于环境监测和资源管理等领域。

2025-05-08 15:00:00 54

原创 GEE训练教程——基于指定区域的全系Landsat影像的检索和下载

这段代码展示了如何使用 Google Earth Engine 处理 Landsat 数据以计算 NDVI,并对不同时间段的数据进行过滤和合并。通过这些步骤,我们可以有效地分析特定区域的植被变化情况。希望这篇博客对你理解 Landsat 数据处理有帮助!

2025-05-08 14:52:23 37

原创 CARVE:AMSR-E 和 SSM/I 观测到的 2003-2014 年阿拉斯加北方和北极地区每日解冻状态

该数据集提供阿拉斯加和北极北方陆地表面状态的每日 10 公里分辨率地图,包括冻结、融化和解冻状态。这些数据来自 2003 年至 2014 年先进微波扫描辐射计(AMSR-E)和特殊传感器微波成像仪(SSM/I)的被动微波辐射计观测数据。数据产品与北极水库碳脆弱性实验(CARVE)期间进行的科学数据收集工作重叠。数据产品是使用时间序列奇异性分类器生成的,该分类器可检测时间序列数据中与土壤或积雪冻融期间发生的地表水文剧烈变化相关的不连续变化或边缘。

2025-05-08 14:46:02 686

原创 GEE土地分类:使用Landsat影像在加纳绘制水体地图(水体提取),随机森林算法进行分类并最终导出结果

这段代码通过多个步骤从Landsat影像中提取和分类水体信息,利用随机森林算法进行分类,并最终导出结果。整个过程包括数据准备、影像处理、分类、细化和导出,适用于环境监测和资源管理等领域。

2025-05-08 11:00:00 26

原创 GEE生物量预测和可视化:使用Google Earth Engine (GEE) 对德国地区的生物量进行预测和模型评估

GEE生物量计算

2025-05-08 09:00:00 190 2

原创 GEE数据集:4米分辨率开放式建筑物 2.5D 时空数据集包含跨度为 8 年(2016-2023 年)

本脚本用于从Google的Open Buildings 2.5D Temporal数据集中下载高分辨率(0.5米)的建筑数据。该数据集提供了建筑数量、高度和存在情况等信息,广泛应用于城市规划、灾害响应和基础设施管理等领域。// 定义感兴趣的年份// 定义感兴趣区域(以葡萄牙里斯本附近区域为例)// 定义AOI(在运行脚本前,请在GEE编辑器中定义此变量)// 定义感兴趣的波段名称。

2025-05-08 08:00:00 538

原创 GEE 案例:利用SNIC分割优化算法实现面向对象的分类

通过以上优化措施,您可以提升影像分割的实际效果,使其更贴合实际地物边界,从而提高后续分类的准确性。较小的值(如 10–20)适用于地物较小的区域,较大的值(如 30–50)适用于地物较大的区域。较高的值(如 5–10)会生成形状更规则的超像素,较低的值(如 1–3)更依赖光谱特征。这里除了我们对算法参数进行调整外,我们还需要考虑我们样本点的选择,因为这是进行面向对象分割的一个很重要的点。SNIC 分割结果可能会随着地图缩放级别的变化而变化,为了获得一致的分割结果,建议在分割后使用。:影响分割的空间范围。

2025-05-07 20:00:00 313

原创 GEE教程——使用 NASA 的 SMAP 数据集计算特定区域的水平亮温(Brightness Temperature),并在地图上进行可视化

GEE教程——使用 NASA 的 SMAP 数据集计算特定区域的水平亮温(Brightness Temperature),并在地图上进行可视化在本博客中,我们将使用 Google Earth Engine (GEE) 来计算特定区域的水平亮温(Brightness Temperature)。我们将使用 NASA 的 SMAP 数据集,并在地图上进行可视化。以下是详细步骤和代码解释。首先,我们需要定义一个点的地理位置,这里以瑞士的某个地点为例:2. 获取城市边界接下来,我们可以使用城市边界数据来限制我们的

2025-05-07 10:39:57 35

原创 WRF-STILT模型输入的气象站数据

该数据集为位于北极碳库脆弱性实验 (CARVE) 飞行路径(2012 - 2015 年)沿线位置的粒子接收器以及阿拉斯加和加拿大北极地区的各个气象站提供天气研究与预报 (WRF) 随机时间倒置拉格朗日传输 (STILT) 模型输入。每个产品包含多个 NetCDF 文件,打包为一个 TAR/GZIP 文件。这些数据对应于同样由 CARVE 科学团队生成的 WRF-STILT 模型足迹数据。该数据集包含 72 个 TAR/GZIP 文件,其中包含 NetCDF 格式的 WRF-STILT 粒子文件。

2025-05-07 10:32:19 946

原创 GEE教程(更新):基于Landsat C08 T1 L2(SR)数据和进行黄河流域的归一化建筑指数NDBI(不透水层)分析

更新公告:因为Landsat C01数据已经下架,所以这里更新了一下新的博客,重写了相关代码原始的博客链接如下:Google Earth Engine(GEE)——利用归一化建筑指数NDBI(不透水层)提取建筑物加载矢量数据:代码首先加载了一个存储在 Google Earth Engine 资产中的矢量数据(),该数据用于定义研究区域。使用 来加载并指定区域。影像质量控制函数 :计算归一化差异建筑指数 :可视化参数 :影像集的加载和处理:选择最佳影像:可视化影像:导出影像:影像结果

2025-05-07 10:30:00 36

原创 GEE图表分析:利用Google Earth Engine(GEE)平台,分析地区的地表温度(LST)数据,并计算城市热岛(SUHI)效应

这段代码利用GEE平台,结合MODIS地表温度和土地覆盖数据,对墨西哥城地区的地表温度进行了详细的分析,并计算了城市热岛效应。通过年度平均温度的时间序列分析和城市与乡村区域的对比,可以更好地理解城市化对地表温度的影响。

2025-05-07 08:00:00 583

原创 GEE教程:利用 Sentinel-2 卫星影像数据计算指定区域的NDVI并可视化

接下来,我们定义研究区域(AOI),并将地图中心设置为该区域。这里我们使用一个存储在项目中的矢量文件。// 将地图中心设置为研究区域,缩放级别为5我们定义 NDVI 的可视化参数,包括最小值、最大值和调色板,以便在地图上清晰显示 NDVI 的分布。min: 0,max: 1,palette: ['red', 'yellow', 'green'], // 调色板:红色表示低 NDVI,绿色表示高 NDVI。

2025-05-06 13:10:08 30

原创 北极碳库脆弱性实验飞行路径粒子接收器数据集

该数据集提供天气研究与预报 (WRF) 随机时间反演拉格朗日输送 (STILT) 足迹数据产品,适用于位于北极碳库脆弱性实验 (CARVE) 飞行路径(2012 年至 2015 年)沿线位置的粒子接收器以及阿拉斯加和加拿大北极地区的各个气象站。每个产品包含多个 NetCDF 足迹文件,打包为 TAR/GZIP 文件。这些飞机和站点位置在 WRF-STILT 模型中被视为接收器,以模拟陆地表面对观测到的大气成分的影响。该数据集中包含的测量数据对于理解北极碳循环的变化以及北极多年冻土融化带来的潜在威胁至关重要。

2025-05-06 13:06:21 666

Cloud_free_imagery_of_Knox_County,_Tennessee_with_Landsat_9,_Sentinel_2_and_NAIP.ipynb

GEE教程可视化

2025-05-15

【遥感与地理信息系统】北极湿地分类及多源遥感数据处理:基于Google Earth Engine的大规模数据集成与机器学习应用

内容概要:本文档详细介绍了利用Google Earth Engine(GEE)平台进行大规模北极湿地分类的研究方法与技术流程。首先对Sentinel-2影像进行了预处理,包括云层遮挡去除、多时相数据合并及波段选择。接着计算了多种光谱指数(如NDVI、NDBI、EVI等),并构建了光学变量组合。同时,文档还涵盖了ArcticDEM和MERIT Hydro数据集的处理,生成了地形特征(如高程、坡度、坡向)和水文特征(如HAND、Flow)。此外,对Sentinel-1和ALOS PALSAR SAR影像进行了去噪和平滑处理,提取了极化比值、雷达植被指数等特征。进一步地,文档描述了ERA5气象数据的处理,包括温度和降水的均值及标准差计算。最后,文档介绍了基于对象的影像分析(OBIA)和基于像素的影像分析(PBIA)两种分类方法,分别训练了随机森林模型,并进行了精度评估和重要性分析。 适合人群:具备遥感数据处理基础,从事地理信息系统(GIS)、环境监测或生态学研究的专业人士。 使用场景及目标:①研究北极地区湿地变化及其生态环境特征;②掌握GEE平台上的多源遥感数据处理与分析技能;③利用机器学习方法进行土地覆盖分类及精度评价。 其他说明:本研究采用GEE平台提供的大量公开数据集,结合多种遥感影像和气象数据,综合运用了图像处理、特征提取、机器学习等技术手段,旨在为北极湿地分类提供科学依据和技术支持。在实际操作过程中,需要熟悉GEE脚本语言,并能够灵活应用相关API函数。

2025-05-15

【遥感影像处理】GEE 代码基于sentinel-2的北极水深建模

内容概要:本文档提供了关于如何利用Google Earth Engine (GEE) 对Sentinel-2卫星图像进行云层遮罩处理、数据预处理以及基于机器学习模型(如线性回归、随机森林、支持向量机和CART决策树)进行深度预测的具体方法。首先定义了一个名为`maskS2clouds`的函数用于去除云层干扰,确保获取到清晰的光学影像;然后对2019年第三季度的影像进行了波段选择与中值合成,并进行了对数变换以增强对比度。接着创建了不同波段间的比率,并通过样本区域选取来准备训练数据集。最后,分别构建并训练了多种机器学习模型,并将随机森林模型的结果导出至Google Drive。该代码使用 Google Earth Engine (GEE) JavaScript (.js) API 编写,用于大规模绘制北极内陆水域深度(水深)。GEE 模型使用对数转换的 Sentinel-2 光学图像来预测水深。水深使用机器学习(ML)算法进行建模。该代码测试了随机森林(RF)、支持向量回归(SVR)、分类与回归树(CART)等机器学习算法,以及传统的多元线性回归(MLR)模型。 适合人群:熟悉遥感技术、地理信息系统(GIS),并且有一定编程基础的研究人员或工程师。 使用场景及目标:①从Sentinel-2数据集中筛选出无云影响的高质量图像;②通过不同波段组合和数学运算提高图像质量;③应用多种机器学习算法建立预测模型,如水深估计等;④掌握GEE平台的基本操作流程,包括但不限于图像处理、特征工程及模型训练。 阅读建议:由于涉及到较多的技术细节,建议读者先了解基本的遥感知识和GEE平台的使用方法,同时可以参考官方文档或其他教程加深理解。此外,在实践中应根据具体需求调整参数设置,确保得到最优结果。

2025-05-15

【遥感与地理信息系统】基于Google Earth Engine的冰水转换检测:春季解冻序列识别算法实现

内容概要:本文档提供了一系列用于检测冰层存在与消失序列(冰存在标记为1,不存在标记为0)的功能集合。首先初始化了Google Earth Engine (EE) API并导入所需包。核心功能是`breakupDate`函数,它用于迭代图像集合中的每个图像,更新`iceBreakupImg`,直到检测到“冰-水-水”序列。该函数处理图像中的每个像素,记录当前时间和前两个时间点的状态,并设置一个标志位来指示是否检测到了指定序列。此外,还有辅助函数`prep4ChangeDetection`,用于准备图像集合以进行变化检测,以及主调用函数`detectSpringBreakup`,它接收图像集合、起始日期和地区兴趣点作为参数,完成整个流程的调用。 适合人群:对遥感数据分析、特别是冰川或湖泊冰层监测感兴趣的研究人员和技术人员;熟悉Python编程语言和Google Earth Engine平台的用户。 使用场景及目标:①需要监测特定区域内的冰层融化情况,确定春季解冻的具体时间;②希望利用地球观测数据进行环境变化研究的专业人士;③想要学习如何使用Google Earth Engine进行时间序列分析和图像处理的学习者。 阅读建议:由于涉及到较多的技术细节和专业术语,建议读者事先了解基本的遥感概念、Python编程基础以及Google Earth Engine API的使用方法。同时,在理解代码逻辑的基础上,可以通过实际操作和调试来加深对功能实现的理解。

2025-05-15

【遥感影像处理】基于Google Earth Engine的光学影像预处理与指数计算:Landsat和Sentinel数据准备及应用

内容概要:本文档提供了一组用于准备光学波段进行分析的函数,并添加特定于光学影像的波段或指数。主要针对Landsat 8和Sentinel 2影像设计了初始化地球引擎API、设置参数(定义各卫星的波段)、预处理Landsat 7/8和Sentinel 2的TOA(大气层顶反射率)图像以及添加归一化差异雪指数(NDSI)。预处理步骤包括重命名波段、屏蔽无效值、填充Landsat 7的条带缺失数据、对像素值进行范围缩放等操作。; 适合人群:遥感科学与地理信息系统领域的研究人员和技术人员,特别是那些需要处理Landsat和Sentinel卫星数据的人士。; 使用场景及目标:①确保Landsat 7、Landsat 8和Sentinel 2影像数据的质量,以便后续分析;②为分类器或其他应用提供标准化的NDSI波段;③支持基于Google Earth Engine平台的遥感数据分析流程。; 其他说明:本脚本适用于Google Earth Engine环境,所有操作均在EE API中完成。用户应确保已经正确配置并初始化了EE API。对于不同传感器的数据,提供了针对性的预处理方法,确保数据的一致性和可用性。

2025-05-15

【遥感影像处理】基于Google Earth Engine的影像预处理函数集:Landsat与Sentinel数据准备及分析文档中的关键技术和

内容概要:本文档提供了一系列用于准备Landsat 7 + 8 TOA和Sentinel 2 TOA影像分析的函数集合。首先初始化了EE API。然后介绍了全球水体掩膜函数,通过导入JRC全球表面水数据集并筛选永久性水体(发生率80-100%),同时移除北美的海岸线水体像素,确保只保留淡水像素。接着定义了图块掩膜函数,用于屏蔽所提供图块(几何形状)之外的区域,通过创建图块的掩膜并映射到图像集合中的每个图像。还提供了多个日期相关函数,如添加年份和一年中的第几天作为波段,添加年份或仅添加一年中的第几天作为波段,将自纪元以来的秒数转换为分数年并作为波段添加,以及将日期(格式为YYYY-MM-dd)作为属性添加到图像上。; 适合人群:对地理信息系统(GIS)、遥感影像处理感兴趣的科研人员、工程师或学生。; 使用场景及目标:①用于预处理Landsat和Sentinel卫星影像数据,为后续分析做准备;②从影像中提取特定时间或地理位置信息,便于进一步研究。; 其他说明:此文档中的函数主要基于Google Earth Engine平台开发,使用者需要具备一定的Python编程基础和遥感基础知识,以便更好地理解和应用这些函数。

2025-05-15

【地球引擎脚本】基于时间序列的冰川存在状态逻辑回归分析:异常观测过滤与模型拟合

内容概要:本文档提供了用于拟合冰存在/不存在与时间(年分数)之间的逻辑回归模型的函数集合,并过滤掉具有高残差(可能是误分类)的观测值。首先初始化EE API,然后定义了`fitLogisticRegression`函数,该函数将输入的影像集合进行转换,计算逻辑回归系数(B0、B1),并为每个影像添加拟合值、残差和R²。接着定义了`temporalFilter`函数,用于过滤出具有较大残差的观测数据。; 适合人群:对遥感数据分析、逻辑回归建模有一定了解的研究人员或工程师。; 使用场景及目标:①对冰川覆盖变化进行时间序列分析;②通过逻辑回归模型评估冰存在/不存在的概率;③识别并排除异常观测数据,提高模型准确性。; 阅读建议:此文档代码较为复杂,涉及到逻辑回归的数学原理以及Google Earth Engine平台的具体操作方法,建议读者先熟悉相关理论知识和平台使用方法,再逐步深入理解代码逻辑。

2025-05-15

【遥感影像处理】基于Earth Engine的多源卫星TOA影像冰川分类算法:Landsat 7/8与Sentinel 2冰水云判别系统设计

内容概要:本文档详细介绍了利用Google Earth Engine (GEE) 对不同卫星(Landsat 7、Landsat 8 和 Sentinel 2)的顶层大气(TOA)反射率图像进行冰、水和云分类的方法。对于每种卫星,定义了特定的分类参数和决策树模型,基于蓝波段和其他特定波段(如短波红外或归一化雪冰指数)来区分冰、水和云。分类函数`classIceL7TOA`、`classIceL8TOA`和`classIceS2TOA`分别用于Landsat 7、Landsat 8 和 Sentinel 2的TOA图像分类。这些函数不仅实现了分类,还创建了云掩膜以排除云的影响,最终输出带有冰存在与否的图像。 适合人群:具有遥感和地理信息系统基础知识的研究人员和技术人员,尤其是对卫星图像处理和分类感兴趣的从业者。 使用场景及目标:①用于科学研究,如监测冰川变化、评估气候变化对冰冻圈的影响;②为环境监测提供技术支持,如评估湖泊或海洋表面的冰覆盖情况;③作为教学资料,帮助学生和研究人员理解遥感图像的分类方法和应用。 阅读建议:此文档提供了详细的代码实现和解释,建议读者首先掌握Google Earth Engine的基本操作和Python编程基础。在学习过程中,可以通过实际操作和调试代码加深理解,同时参考官方文档和其他相关资源。

2025-05-15

【遥感与地理信息系统】基于Google Earth Engine的春季冰融期检测:多源卫星影像融合与时间序列分析系统构建

内容概要:本文档详细介绍了利用Google Earth Engine(GEE)API进行春季冰层破裂日期估计的Python脚本。主要功能是基于指定区域(tile)、年份(year)及其他参数,处理来自Landsat 7、Landsat 8和Sentinel 2卫星图像集合的数据,通过去除云层干扰、应用水体掩模、分类冰与水像素、时间序列分析以及逻辑回归滤波等步骤,最终生成包含破裂日期、R²值、观测像素数量和破裂间隔天数等信息的30米分辨率图像,并将其导出为GEE资产。; 适合人群:对遥感数据处理、冰川学或环境变化研究感兴趣的科研人员和技术开发者。; 使用场景及目标:① 用于监测特定区域内春季冰层融化的时间动态;② 辅助气候变化研究,特别是北极地区或湖泊冰情的变化趋势分析;③ 为水资源管理和生态评估提供科学依据。; 阅读建议:由于涉及到较多的技术细节如GEE API调用、图像处理流程及统计模型的应用,建议读者具备一定的Python编程基础和地理信息系统(GIS)知识,在理解代码逻辑的同时,关注各函数的功能及其参数设置,确保能正确配置并执行任务。

2025-05-15

【地理信息系统】基于Google Earth Engine的区域降水分析:埃塞俄比亚希姆布里特地区降水数据处理与可视化

内容概要:本文档展示了如何使用Google Earth Engine(GEE)和geemap库进行特定区域的降水数据处理与可视化。首先创建了一个地图实例并设定了中心位置与缩放级别,接着导入了研究区域边界数据(Shimburit),设定时间范围为2023年4月1日至4月30日。通过调用UCSB-CHG提供的CHIRPS每日降水数据集,在指定时间段内筛选出“precipitation”波段,并计算了该期间的累积降水量。然后利用reduceRegion方法对Shimburit区域内的平均降水量进行了统计计算,得到的结果是84.46毫米。最后将计算得到的季节性降水量图层添加到地图上,并导出了该区域的TIFF格式影像。 适用人群:从事地理信息系统(GIS)、遥感科学或气象学相关领域的研究人员和技术人员,以及对地球观测数据分析感兴趣的开发者。 使用场景及目标:①学习如何基于GEE平台获取、处理卫星遥感数据;②掌握时间序列降水量的提取与统计分析技巧;③了解如何将处理后的数据可视化并保存为本地文件。 其他说明:此案例主要集中在降水量的数据处理流程上,对于想要深入了解GEE编程接口和遥感数据分析方法的人来说是非常好的实践材料。在实际操作时可以根据自己的研究需求调整参数设置,如时间范围、研究区域等。

2025-05-15

土地分类脚本代码python

土地分类脚本代码

2025-05-15

地球观测基于eo-learn和Sentinel数据的遥感图像处理与水位监测工作流设计:地球观测数据自动分析系统构建

内容概要:本文介绍了如何利用eo-learn库和Sentinel数据进行地球观测(EO)数据分析。eo-learn是一系列开源Python包,用于无缝访问和处理卫星图像序列,支持自动化提取复杂时空模式。文章首先概述了eo-learn的核心组件——EOPatch(表示单个区域遥感数据)、EOTask(定义操作任务)和EOWorkflow(组合多个任务)。然后,详细讲解了创建、加载、保存EOPatch对象的方法,演示了如何通过具体任务如加载Sentinel-2数据、添加矢量数据、自定义任务等来构建EOTask。最后,以监测南非Theewaterskloof大坝水位为例,展示了从下载影像到水体检测、云层过滤、计算有效像素覆盖率等一系列步骤,最终实现了大坝水位变化的可视化。 适合人群:对遥感数据处理感兴趣的研究人员和技术人员,尤其是那些希望深入了解EO数据分析流程及其应用的人群。 使用场景及目标:①学习如何使用eo-learn库处理遥感数据,包括数据加载、预处理、特征提取等;②掌握基于EO数据的工作流设计与实现,如水体监测、灾害评估等;③理解并实践如何结合遥感技术和机器学习方法解决实际问题。 其他说明:本文提供了详细的代码示例和注释,帮助读者更好地理解和应用eo-learn的功能。同时,鼓励用户根据自身需求调整参数或扩展新功能,促进社区协作与资源共享。

2025-05-15

地球观测基于eo-learn和Sentinel数据的遥感图像处理与水位监测工作流设计:地球观测数据自动分析系统构建

内容概要:本文介绍了如何利用eo-learn库和Sentinel数据进行地球观测(EO)数据分析。eo-learn是一系列开源Python包,用于无缝访问和处理卫星图像序列,支持自动化提取复杂时空模式。文章首先概述了eo-learn的核心组件——EOPatch(表示单个区域遥感数据)、EOTask(定义操作任务)和EOWorkflow(组合多个任务)。然后,详细讲解了创建、加载、保存EOPatch对象的方法,演示了如何通过具体任务如加载Sentinel-2数据、添加矢量数据、自定义任务等来构建EOTask。最后,以监测南非Theewaterskloof大坝水位为例,展示了从下载影像到水体检测、云层过滤、计算有效像素覆盖率等一系列步骤,最终实现了大坝水位变化的可视化。 适合人群:对遥感数据处理感兴趣的研究人员和技术人员,尤其是那些希望深入了解EO数据分析流程及其应用的人群。 使用场景及目标:①学习如何使用eo-learn库处理遥感数据,包括数据加载、预处理、特征提取等;②掌握基于EO数据的工作流设计与实现,如水体监测、灾害评估等;③理解并实践如何结合遥感技术和机器学习方法解决实际问题。 其他说明:本文提供了详细的代码示例和注释,帮助读者更好地理解和应用eo-learn的功能。同时,鼓励用户根据自身需求调整参数或扩展新功能,促进社区协作与资源共享。

2025-05-15

【遥感与地理信息系统】基于TensorFlow和Google Earth Engine的土地分类深度学习模型构建与应用:从数据预处理到模型评估及图像分类预测全流程实现

内容概要:本文详细介绍了如何利用Google Earth Engine(GEE)和TensorFlow进行遥感影像分类的任务。首先,通过Python API导入并认证GEE,配置GCS存储桶信息,定义训练数据特征和标签。接着,从GCS加载TFRecord格式的训练数据集,解析数据结构,将其转换为适合Keras模型输入的格式。构建了一个包含两层全连接神经网络的深度学习模型,并使用Adam优化器和交叉熵损失函数编译模型,对模型进行了100轮次的训练。训练完成后,保存模型并在测试集上评估其性能。最后,将训练好的模型应用于整个区域的遥感影像分类任务,导出预测结果为TFRecord格式文件,并上传回GEE资产中。 适合人群:具备一定编程基础,尤其是熟悉Python、TensorFlow和遥感技术的研究人员或工程师。 使用场景及目标:①使用GEE和TensorFlow构建深度学习模型进行大规模遥感影像分类;②掌握从数据预处理到模型训练、评估再到实际应用的完整流程;③学会如何将模型应用于新数据并导出结果。 其他说明:此项目基于Google Colab环境运行,需要安装必要的库并完成身份验证。同时提供了相关资源链接供进一步学习。感谢Dr. Ujaval Gandhi和Dr. Hammad Gilani的帮助和支持。

2025-05-15

【遥感影像处理】基于Google Earth Engine的多光谱影像预处理与分类样本导出:伊斯兰堡地区土地覆盖分类数据准备文档的主要内容

内容概要:本文档详细介绍了如何利用Google Earth Engine(GEE)进行数据筛选、处理和导出,以准备用于TensorFlow的土地覆盖分类任务。首先,通过过滤Sentinel-2卫星图像集合,选择特定日期范围内的低云量图像,并对选定区域(如伊斯兰堡)进行裁剪和镶嵌。接着,对图像进行标准化和归一化处理,包括计算NDVI指数和调整RGB波段的反射率值。随后,创建训练样本点并将其分为训练集和测试集,最后将处理后的数据导出到Google Cloud Storage,为后续的机器学习模型训练做好准备。 适合人群:具有遥感数据处理和地理信息系统基础知识的研究人员或工程师,尤其是对土地覆盖分类感兴趣的从业者。 使用场景及目标:①掌握如何在GEE中筛选和处理Sentinel-2卫星图像;②学会创建和管理训练样本点;③了解如何将处理后的遥感数据导出到云端存储,以便进一步应用于机器学习模型训练。 阅读建议:由于涉及较多技术细节和具体操作步骤,建议读者在阅读时结合实际案例进行练习,并参考相关API文档加深理解。同时,确保对GEE平台的基本功能有所了解,有助于更好地理解和应用文中介绍的方法和技术。

2025-05-15

【地理信息系统】基于Python的NetCDF转GeoTIFF与Google Earth Engine数据上传处理:环境监测与时空数据分析自动化脚本开发

内容概要:本文档提供了从NetCDF文件提取图层并上传至Google Earth Engine(GEE)的Python脚本。首先,它配置了运行环境和参数,如文件路径、时间范围等。接着定义了`get_layer`函数用于将指定图层从源文件中导出为GeoTIFF格式,同时确保输出路径存在。`pull_tifs_from_nc`函数根据设定的时间频率(年或月),批量调用`get_layer`函数生成多个TIFF文件。最后,`push_tifs`函数负责创建GEE资产集合,并将生成的TIFF文件上传到GEE平台,支持上传至Google Cloud Storage作为中间步骤。整个流程考虑到了干运行模式,允许用户模拟执行而不实际操作远程资源。 适合人群:熟悉Python编程语言,尤其是地理信息系统(GIS)相关开发,以及对Google Earth Engine有一定了解的研究人员和技术人员。 使用场景及目标:①从NetCDF数据集中提取特定时间段内的图层信息;②自动化地将处理后的图像文件上传至GEE平台,以便后续进行遥感数据分析或可视化展示;③适用于需要频繁处理大量时空数据集并希望简化数据管理流程的研究项目。 阅读建议:由于涉及到较多的技术细节和第三方库的使用,建议读者提前准备好相应的开发环境,并仔细阅读官方文档以理解各个API的具体用法。此外,在实际应用前,可以通过修改配置项来进行小规模测试,确保代码能够正确运行。

2025-05-15

基于深度学习的河流变化检测项目

基于深度学习的河流变化检测项目

2025-05-15

基于深度学习的河流变化检测项目代码

内容概要:详细介绍了基于深度学习的河流变化检测项目,涵盖从数据收集、预处理到模型训练和评估的全流程。首先,利用Google Earth Engine(GEE)和Python库收集并处理了印度恒河沿岸三个城市(Prayagraj、Varanasi、Patna)2014年至2025年的Sentinel-2和Landsat卫星图像,提取了NDVI和NDWI等植被指数。接着,对原始影像进行了裁剪、归一化、重采样等预处理操作,并生成了二值掩膜用于监督学习。然后,构建了一个基于DeepLabV3+的语义分割模型,采用ResNet50作为编码器,使用BCE损失函数和Dice损失函数进行训练,同时引入了数据增强和类权重调整以应对样本不平衡问题。最后,通过验证集评估了模型性能,计算了准确率、精确率、召回率、F1分数和IoU等指标,并绘制了混淆矩阵和训练历史图表。 适用人群:具备一定编程基础,对遥感图像处理和深度学习感兴趣的科研人员或工程师。 使用场景及目标:①利用GEE平台批量下载并处理多时相卫星影像;②掌握遥感影像预处理技术,如裁剪、归一化、重采样等;③学习如何构建和优化语义分割模型,特别是针对小样本数据集;④评估模型性能,绘制各类可视化图表辅助分析。 其他说明:此项目不仅涉及具体的代码实现和技术细节,还强调了从问题定义到解决方案实施的完整流程。读者可以在实践中逐步理解每个步骤的目的和意义,同时可以根据自身需求调整参数设置或扩展功能模块。此外,项目提供了详细的训练历史记录和评估结果,便于后续改进和优化。

2025-05-15

【遥感与地理信息系统】基于卫星影像的海岸侵蚀检测:利用NDWI分析2016至2024年拉各斯海岸线变化Google Earth Engine平台

内容概要:本文介绍了如何利用卫星影像(如Sentinel-2)检测海岸侵蚀情况,主要通过计算归一化差异水体指数(NDWI)来识别水体边界变化。首先,通过Earth Engine平台进行认证初始化,并定义研究区域(例如拉各斯海岸线)。然后,定义了一个NDWI计算函数,该函数基于绿光波段和近红外波段的反射率差异。接下来,加载指定年份的Sentinel-2影像并计算NDWI值,提取水体掩模。通过对不同年份的水体掩模进行对比,生成海岸线变化图,红色表示侵蚀区域,绿色表示淤积区域。最后,使用geemap库将结果可视化,并添加图例以便解释。 适合人群:对遥感技术、地理信息系统(GIS)、环境监测感兴趣的科研人员和技术爱好者。 使用场景及目标:① 通过卫星影像数据监测海岸线变化,评估自然或人为因素引起的海岸侵蚀和淤积情况;② 学习如何利用Google Earth Engine和Python进行遥感数据分析与可视化。 其他说明:本案例展示了从数据获取到处理分析再到可视化的完整流程,适用于希望深入了解遥感应用和掌握相关工具使用的读者。建议读者实际操作代码,尝试调整参数以适应不同的研究区域和需求。

2025-05-15

【地理信息系统】基于Google Earth Engine的海岸线变化检测:利用NDWI进行水体提取与可视化分析

内容概要:本文档展示了如何利用Google Earth Engine(GEE)和geemap库来分析和可视化尼日利亚拉各斯海岸线在2016年和2024年之间的变化。首先初始化Earth Engine并定义感兴趣区域(拉各斯海岸线)。接着定义了一个计算归一化差异水体指数(NDWI)的函数,用于区分水体和其他地物。通过加载和过滤Sentinel-2卫星图像,分别获取2016年和2024年的NDWI图像。然后应用阈值提取水体掩膜,并将这些掩膜叠加到地图上进行可视化,使用不同颜色表示两个年份的水体分布情况。最后,导出变化检测图像到Google Drive,以便进一步分析海岸侵蚀情况。 适合人群:具有基本地理信息系统(GIS)知识和Python编程经验的研究人员或学生。 使用场景及目标:①研究特定区域内的水体变化,如海岸线侵蚀或湖泊面积变化;②学习如何使用Google Earth Engine和geemap库处理遥感数据;③掌握基于NDWI的水体提取方法及其应用。 阅读建议:读者应熟悉Python编程语言以及遥感基础知识,在阅读过程中可以尝试运行代码片段并调整参数以加深理解。同时,可以通过查阅相关文献来补充对NDWI的理解。

2025-05-15

【JavaScript编程】常用字典操作函数实现:复制、更新与删除键及列表成员检查功能开发

内容概要:本文档提供了几个实用的JavaScript函数定义,主要涵盖字典(对象)操作和列表查询功能。包括复制字典、更新字典中特定键值对而不改变原字典、移除字典中指定键以及检查列表是否包含某个元素等功能。每个函数都详细地实现了其功能,如`copyDict`用于创建字典副本,`updateDict`允许更新副本中某项的值,`removeKeys`可以删除指定键,而`listIncludes`用来判断列表中是否存在某元素。; 适合人群:具有基础JavaScript知识的开发者,特别是那些需要处理大量数据结构操作的前端或后端工程师。; 使用场景及目标:①在开发过程中,当需要安全地复制并修改配置对象时,可以使用`copyDict`和`updateDict`方法;②当希望从现有数据集中筛选出不需要的数据项时,可利用`removeKeys`函数;③在验证用户输入或其他条件判断时,`listIncludes`能够帮助快速确定某个值是否存在于集合中。; 阅读建议:由于这些函数是基于JavaScript语言特性构建的基础工具函数,在实际项目应用前应先熟悉JavaScript的对象和数组操作,同时可以通过提供的示例代码进行练习,确保理解每种情况下的正确用法。

2025-05-15

【地理信息系统】基于Google Earth Engine的SCD/RR可视化参数配置:颜色方案与图例生成脚本设计

内容概要:本文档是关于Google Earth Engine (GEE) 中用于可视化SCD/RR叠加层(scd rr app)的参数配置脚本,由Martin Holdrege编写并开始于2025年1月13日。文档主要定义了颜色方案、标签以及图例的创建方法。颜色方案包括适应Chambers等人研究的颜色集和BlueOr双变量颜色方案,分别对应不同的分类标签,如CSA、GOA、ORA等类别及其组合。此外,还定义了一组用于表示类别变化的颜色和标签,涵盖了稳定或改善、RR类下降、SEI类下降和两者均下降的情况。最后,文档通过调用外部函数库fig_functions.js来创建图例面板,并将其位置设置为左下角,同时提供了测试代码以在地图上显示图例。 适合人群:熟悉Google Earth Engine平台并具有一定JavaScript编程经验的遥感分析师、地理信息系统专家或相关领域的研究人员。 使用场景及目标:①为SCD/RR叠加层创建专业的可视化效果;②通过定制化的颜色方案和标签系统准确表达数据特征;③利用图例面板增强地图解读的直观性和准确性。 阅读建议:由于本文档涉及具体的代码实现和技术细节,建议读者在阅读时对照Google Earth Engine官方文档,以便更好地理解和应用文中提供的参数配置与函数调用。

2025-05-15

【地理信息系统】基于Google Earth Engine的可视化脚本:未来SCD应用程序的色彩与图例配置设计

内容概要:本文档《gee scripts.txt》由Martin Holdrege编写,旨在为未来的SCD应用程序提供可视化功能和其他元素。文档详细描述了用于环境变化分析的颜色调色板、图层样式描述符(SLD)以及图例设置。它定义了多种颜色方案,如GCMs一致性程度的颜色表示、SEI变化的色块梯度、以及不同区域类型(如核心灌木区、增长机会区等)的颜色编码。此外,还创建了多个图例,包括SEI类别的变化、GCMs的一致性、驱动SEI变化的主要因素等,以帮助用户更好地理解和解释数据。 适合人群:对地理信息系统(GIS)、遥感技术和生态环境监测感兴趣的科研人员和技术开发者,特别是那些需要进行可视化数据分析的专业人士。 使用场景及目标:①研究和展示未来SCD应用中不同类型的环境变化及其影响;②通过定制化的颜色方案和图例,直观地表达复杂的数据集,如SEI的变化趋势、GCMs之间的共识程度等;③支持基于Google Earth Engine平台的数据处理与分析任务。 其他说明:此文档提供了丰富的可视化工具和配置选项,可用于创建专业的环境变化分析图表。建议使用者熟悉Google Earth Engine平台的基本操作,并结合实际项目需求调整相关参数,以便更有效地利用这些资源。

2025-05-15

【地理信息系统】基于GEE的PJ生态位应用可视化参数设置与图例生成:适用于生态变化分析的色彩配置和可视化系统构建

内容概要:本文档为PJ生态位应用程序可视化提供了一系列函数和其他元素。作者Martin Holdrege于2025年1月8日开始编写此脚本。文档详细介绍了不同类型的适应度(suitability)及其变化的可视化参数设置,包括当前适应度、适应度变化以及稳健变化的配色方案和参数范围。对于当前适应度,采用viridis调色板,颜色范围从0到1;对于适应度变化,使用自定义的warmcool调色板,颜色范围从-1到1;对于稳健变化,定义了九种颜色和对应的标签,并按特定顺序排列。此外,文档还描述了图例的创建过程,包括样式设置、位置布局以及如何将不同类型的适应度变化整合到图例中。; 适合人群:对地理信息系统(GIS)和地球引擎(Google Earth Engine)有一定了解的数据分析师、研究人员或开发者。; 使用场景及目标:①用于PJ生态位应用程序中不同适应度指标的可视化展示;②帮助用户理解环境变化对物种分布的影响;③为研究和报告提供直观的图表支持。; 阅读建议:读者应熟悉Google Earth Engine平台的基本操作,重点关注不同适应度变化的配色方案及其背后的含义,同时结合实际数据进行可视化效果测试。

2025-05-15

【地理信息系统】基于GEE的可视化脚本:颜色调色板与图例构建用于遥感数据分析

内容概要:本文档是关于可视化元素和函数的脚本,由Martin Holdrege编写,旨在为地理空间数据分析提供支持。文档主要介绍了不同类型相对风险(RR)的配色方案及其可视化参数设置。具体包括连续型RR(Type 1)、分类型RR(Type 2)以及差值型RR(Type 3)的配色选择与范围设定。此外,还详细描述了如何构建图例,包括样式定义、标题创建、颜色条与标签的组合等。最后,提供了测试代码片段用于验证图例的显示效果。 适合人群:从事地理信息系统(GIS)开发或数据分析的专业人士,尤其是那些需要对相对风险进行可视化展示的研究人员和技术人员。 使用场景及目标:①为连续型、分类型和差值型相对风险创建合适的颜色映射和可视化参数;②利用Earth Engine平台构建并展示地图图例,确保数据可视化结果直观易懂;③通过调整样式属性来优化图例的外观和布局,以满足特定的应用需求。 阅读建议:由于本文档涉及较多的技术细节和具体实现方法,在阅读时应结合实际应用场景理解各部分代码的作用,并尝试运行示例代码以加深理解。同时,建议读者熟悉Google Earth Engine平台的基础操作,以便更好地掌握文档内容。

2025-05-15

【地理信息系统】基于GEE的可视化脚本:地图图层与图例样式设计及操作函数集

内容概要:本文档提供了一系列用于地理空间数据可视化的函数,主要分为创建样式化图层描述符、创建图例、图层管理以及背景图层创建四大模块。创建样式化图层描述符部分介绍了如何根据输入的数量和颜色生成颜色映射条目,并组合多个条目形成完整的颜色映射。创建图例部分展示了如何构建单行图例和基于颜色与名称列表的完整图例。图层管理部分涵盖了检查、移除、改变可见性和重新添加图层的功能。背景图层创建部分则提供了创建纯色背景图层和州边界轮廓图层的方法,并实现了通过复选框控制两个地图实例中背景图层和州边界轮廓图层可见性的功能。此外,还提供了一个应用掩膜到指定图层的函数。 适用人群:适用于有一定JavaScript编程基础,对Google Earth Engine平台有一定了解的开发者或研究人员。 使用场景及目标:①需要在Google Earth Engine平台上进行地理空间数据分析和可视化展示的项目;②希望自定义地图图层样式、图例样式,以及实现动态图层管理和交互功能的开发者;③研究者可以利用这些工具更好地展示和解释地理空间数据,提高数据的可读性和可用性。 其他说明:该文档不仅包含了详细的函数定义,还包括了部分测试代码,帮助用户快速理解和上手使用这些函数。所有函数都经过了良好的封装,可以直接调用并根据实际需求调整参数。

2025-05-15

【地理信息系统】基于Google Earth Engine的SEI和RR图层叠加探索工具:环境变量与气候情景可视化系统设计了文档的主要内容

内容概要:该脚本旨在帮助用户探索和理解SEI(环境和社会影响评估)与RR(恢复力评级)的叠加效果。作者Martin Holdrege通过定义用户变量、加载模块函数、设置字典和样式,以及创建交互式地图界面来实现这一目的。脚本首先定义了背景、主地图层和州边界图层的索引位置,接着加载了必要的功能模块和参数配置文件。然后,通过设置选择器和回调函数,用户可以选择不同的变量、气候情景和掩模,动态更新左右两个地图面板的内容。此外,脚本还实现了分屏显示、图层管理、状态轮廓线自动添加、背景切换等功能,以增强用户体验和数据可视化效果。 适合人群:对地理信息系统(GIS)、环境科学或相关领域有一定了解的研究人员和技术人员,尤其是熟悉Google Earth Engine平台的用户。 使用场景及目标:①通过交互式地图界面探索不同变量、气候情景和物种分布模型下的SEI和RR叠加效果;②研究环境变化对特定区域的影响,如气候变化对生态系统的影响;③辅助决策制定,为环境保护和恢复提供数据支持。 阅读建议:由于该脚本涉及较多的GIS技术和Google Earth Engine平台的具体操作,建议读者先熟悉相关基础知识,特别是Google Earth Engine的API使用方法。在学习过程中,可以通过修改变量和参数,观察地图的变化,加深对SEI和RR叠加效果的理解。

2025-05-15

【地理信息系统】基于Google Earth Engine的草地生态管理交互式图层对比应用:历史与未来场景可视化系统设计

内容概要:本文档详细介绍了用于展示 Holdrege 等人 2024 年关于草原生态与管理研究的基本图层的应用程序。该应用程序基于 SEI/scripts/06_app_sage-climate-training.js 开发,旨在通过中间的滑块比较两个不同的图层。文档描述了应用程序的结构和功能,包括用户定义变量、依赖项加载、样式设置、选择器创建、图层更新函数、地图初始化以及图例和复选框的添加。此外,文档还列出了待办事项,如添加背景复选框、动态创建图层编号变量、避免图层重复问题等。; 适合人群:对地理信息系统(GIS)、生态学或环境科学感兴趣的科研人员和学生,特别是那些希望深入了解 Google Earth Engine (GEE) 和其应用的人群。; 使用场景及目标:① 通过滑块比较不同时间或条件下的生态变化;② 动态选择和显示历史图层和未来预测图层;③ 探讨不同气候情景和建模假设对生态指标的影响;④ 提供可视化工具以支持生态管理和决策制定。; 阅读建议:此资源主要用于构建和操作 GEE 应用程序,以展示和比较不同生态图层。读者应熟悉 JavaScript 和 GEE 平台的基础知识,并结合实际数据进行实验和调整。建议在阅读过程中逐步实现代码片段,以加深理解和掌握其工作原理。

2025-05-15

【地理信息系统】基于Google Earth Engine的非洲地区未燃烧像元分析与采样点生成:多源遥感数据融合及火烧区域统计

内容概要:本文档提供了一段Google Earth Engine (GEE) 代码,旨在分析非洲大陆特定区域内未燃烧像素(即未受火灾影响的区域)的空间分布及其相关环境变量。代码首先加载了多个遥感数据集,包括Landsat 8影像、气候数据、数字高程模型(DEM)、人类活动指数等,并定义了研究区域为非洲大陆。接着,通过过滤MODIS火烧数据集,创建了一个累计火烧掩膜图层,用于识别火烧区与非火烧区。随后,基于六边形网格对未燃烧区域进行了统计分析,提取了每个六边形内的环境变量值(如坡度、风速、温度、植被指数等),并通过分层抽样方法在每个未燃烧的六边形内随机选取样本点,最终将所有样本点的数据导出为CSV文件。 适合人群:熟悉遥感数据分析及Google Earth Engine平台的科研人员或地理信息系统(GIS)专业学生,特别是关注火灾生态学、土地覆盖变化等领域的人士。 使用场景及目标:①利用多源遥感数据进行火烧区与非火烧区的空间分析;②评估不同环境因子对未燃烧区域的影响;③为后续深入研究提供基础数据支持,如构建火灾风险预测模型等。 其他说明:此代码片段展示了如何整合多种遥感数据集并应用于特定地理区域的研究,强调了空间分析技术的实际应用价值。同时,它还涉及到一些重要的图像处理步骤,如云层遮挡去除、影像裁剪、重投影等,以及高级的空间分析功能,如分层抽样和区域统计计算。在实际操作过程中,用户需要根据自身需求调整参数设置,例如时间范围、空间分辨率等。此外,由于涉及大量数据处理,建议在运行时确保有足够的计算资源。

2025-05-15

【地理信息系统】Google Earth Engine代码实现:全球多区域环境因子提取与火灾掩膜生成

内容概要:该文档提供了Google Earth Engine (GEE) 的代码片段,用于处理全球不同地区的遥感数据,包括气候变量、地形特征、土地覆盖、人类活动指数以及火烧迹地等数据的提取与处理。代码首先定义了用户可调节参数如时间范围、采样点数量和分辨率等,接着导入多个数据集(如气候数据、数字高程模型、人类影响指数等),并进行预处理,例如创建火烧掩膜、计算地形因子(坡度和朝向)、去除Landsat影像中的云层和阴影、计算植被指数(NDVI和NDMI)。随后,将所有预测变量组合成一个多波段图像,并对各大洲进行分层抽样,最后将样本点导出到Google Drive或GEE资产中。此外,还提供了一个交互式的大陆选择控件,允许用户动态选择和查看特定区域的数据。 适合人群:地理信息系统(GIS)专业人员、环境科学家、遥感分析师以及对地球观测数据分析感兴趣的科研工作者和技术爱好者。 使用场景及目标:①用于研究气候变化、自然灾害(如火灾)、土地利用变化等领域;②支持环境监测、生态保护规划、灾害风险管理等实际应用;③为学术研究提供数据支持,帮助研究人员更好地理解自然和社会经济因素之间的关系。 阅读建议:本代码示例展示了如何利用GEE平台集成多种遥感数据源,并进行综合分析。读者应具备一定的编程基础,特别是JavaScript语法知识,同时熟悉遥感和GIS基本概念。建议在实际操作过程中逐步理解每个步骤的功能,并尝试调整参数以探索不同的应用场景。

2025-05-15

【地理信息系统】基于GEE的MODIS火灾区域分析与多源遥感数据融合:非洲大陆六边形网格烧毁面积统计及环境变量采样

内容概要:本文档详细介绍了如何使用Google Earth Engine (GEE) 处理和分析火灾数据。首先加载了在QGIS中生成的六边形网格,并将其裁剪到大陆几何范围内。接着,通过筛选特定时间范围内的MODIS火灾数据,生成了火灾掩膜图像,并进行了累计烧毁面积的计算与重投影。随后,文档引入了Landsat 8影像集合,应用云掩膜后计算了NDVI和NDMI等植被指数,同时整合了地形、气候、土地覆盖以及人类影响等多种环境变量。最后,通过对六边形网格内的点进行分层抽样,提取了各个环境变量的值,并将结果导出至Google Drive。 适合人群:具备一定地理信息系统(GIS)和遥感基础知识的研究人员或工程师,尤其是对火灾监测和环境变化分析感兴趣的用户。 使用场景及目标:①研究火灾发生的时间和空间分布特征;②评估不同环境因素对火灾的影响;③通过多源遥感数据融合,提供全面的火灾风险评估工具。 阅读建议:由于涉及到大量遥感数据处理和分析,建议读者具备一定的编程基础和遥感数据分析经验。在学习过程中,可以结合实际案例进行操作练习,熟悉GEE平台的功能和API调用方式。此外,对于环境变量的选择和处理部分,应重点理解各变量的物理意义及其在模型中的作用。

2025-05-15

【地理信息系统】基于GeoPandas的城市变化类别空间分布分析:内罗毕市三个城区区域对比研究

内容概要:本文档详细介绍了使用地理空间数据分析内罗毕城市不同区域的城市变化类别。作者Sai Ganesh Veeravalli通过导入必要的地理空间处理库(如geopandas、matplotlib等),加载并预处理了Google 2.5D Open Buildings等数据集。文档分为三个主要部分:首先,对城市边界、贫民窟及其缓冲区进行几何处理和投影转换;其次,通过空间叠加分析将城市划分为三个关键区域——贫民窟、贫民窟100米缓冲区和其他城市区域,并可视化这些区域的空间分布;最后,针对四个重点城市变化类别(垂直密集化、高密度化、水平密集化和衰退)进行了面积统计和百分比分布分析,生成了汇总表和柱状图,直观展示了各区域的变化情况。 适合人群:地理信息系统(GIS)分析师、城市规划师、研究人员以及对地理空间数据分析感兴趣的开发者。 使用场景及目标:①理解如何使用Python进行地理空间数据处理和分析;②掌握空间叠加分析方法,了解如何定义和分析城市不同区域的变化特征;③学习如何利用地理空间数据进行城市规划和发展研究。 阅读建议:此文档提供了从数据加载到可视化展示的完整流程,建议读者在阅读过程中结合实际代码运行,理解每一步操作的具体含义和应用场景。此外,对于不熟悉地理空间分析工具的读者,建议先学习相关基础知识,以便更好地理解和应用文档中的技术细节。

2025-05-15

【地理信息系统】基于Python的地理数据分析:城市变迁类别下前五贫民窟面积统计与可视化系统设计

内容概要:本文档介绍了一个用于识别和分析城市变迁中前五名贫民窟(按面积)的地理空间数据分析流程。作者Sai Ganesh Veeravalli利用Google 2.5D Open Buildings数据集和Nairobi IDEAtlas贫民窟参考数据,通过Python脚本实现了对四个关键城市变化类别的贫民窟进行筛选、计算面积并导出KML文件以供验证。具体步骤包括导入所需库、加载和预处理数据、筛选目标类别、计算交集区域面积、绘制地图以及导出结果文件。; 适合人群:地理信息系统(GIS)分析师、城市规划师、研究城市变迁的学者和技术人员。; 使用场景及目标:①研究特定城市变迁类别下的贫民窟分布及其面积变化;②为城市规划和政策制定提供数据支持;③验证和评估不同时间段内的城市变化趋势。; 其他说明:此文档提供了完整的代码示例和详细的注释,帮助用户理解和复现整个分析过程。此外,还包含了地图绘制技巧,如添加比例尺和指北针,使生成的地图更加专业和直观。所有输出文件均保存为KML和Shapefile格式,方便在各种GIS软件中进一步分析和展示。

2025-05-15

【地理信息系统】基于建筑物统计数据的城市变化分类:2016至2023年城市建筑数量和高度变化分析与分类系统设计

内容概要:本文档详细记录了通过Python脚本处理建筑物数量和高度统计数据,以分类2016年至2023年间的城市变化情况。首先,导入必要的地理数据处理库,并定义输入输出路径。接着,通过读取指定年份(2016和2023)的数据文件,对建筑物的数量和平均高度进行合并与预处理。在此基础上,计算各区域建筑物数量和高度的变化差值,并根据设定的阈值将变化分为增加、减少或稳定三类。最后,结合建筑物数量和高度的变化类别,进一步细分为八种城市变化类型,如垂直密集化、水平密集化等,并将结果保存为GeoPackage格式文件。 适合人群:对城市规划、地理信息系统(GIS)、遥感数据分析感兴趣的科研人员和技术开发者。 使用场景及目标:①研究城市结构变迁趋势;②评估城市发展政策的效果;③支持城市规划决策制定;④提供城市化进程的数据支持。 其他说明:此文档使用Google 2.5D Open Buildings数据集作为基础数据源,代码实现过程中涉及多个地理数据处理库的应用,如geopandas、pandas等。建议读者具备一定的Python编程基础和地理空间数据分析经验,以便更好地理解和应用文中提供的方法和技术。

2025-05-15

【地理信息系统】基于Google 2.5D数据的建筑物统计提取:计算建筑数量与平均高度的栅格分析系统设计

内容概要:本文档详细介绍了如何从Google 2.5D建筑物数据集中提取建筑物数量和平均高度统计信息。首先导入所需的库,包括rasterio、geopandas等。接着,准备栅格马赛克并应用二值掩模,具体步骤包括将高分辨率栅格瓦片合并为单个马赛克,创建二值存在掩模以及对建筑物高度栅格应用掩模。然后,计算建筑物数量和平均高度,定义了处理多边形的函数,并通过批处理方式运行区域统计。最后,将结果添加到GeoDataFrame中并导出。整个过程中还提供了可选的处理速度绘图以供诊断。 适合人群:具备一定地理信息系统(GIS)和遥感基础知识的研究人员和技术人员,特别是对建筑物统计数据感兴趣的用户。 使用场景及目标:①需要对特定区域内建筑物的数量和高度进行统计分析;②利用Google 2.5D建筑物数据集进行城市规划或灾害评估等研究;③学习如何使用Python脚本处理和分析遥感影像数据。 阅读建议:由于涉及较多的技术细节,建议读者在阅读前熟悉相关工具库的基本用法,并确保理解GIS概念如栅格数据、矢量数据等。此外,在实践中可以根据自己的需求调整参数和路径设置,以适应不同的应用场景。

2025-05-15

【遥感影像处理】基于Google Earth Engine的Landsat 8影像NDVI变化检测:植被健康状况分析与可视化

内容概要:本文档展示了如何利用Google Earth Engine (GEE) 脚本处理 Landsat 8 影像数据,包括影像的获取、预处理(云和云阴影掩膜、饱和度掩膜、波段重定标)、合成指定时间段内的中值影像、计算归一化燃烧比(NBR)以及基于NBR的植被指数(NDVI)变化检测。具体步骤为定义影像集合和波段,创建掩膜函数maskL8sr()去除不需要的像素,分别获取2019年6月到7月和2020年1月到2月的中值影像compositeBefore与compositeLater,通过nbrFunction()函数计算两个时期的NDVI并可视化,最后比较两次NDVI差异形成dnvit图层; 适合人群:有一定遥感基础知识,对GEE平台有一定了解的研究人员或学生; 使用场景及目标:①研究特定区域植被健康状况随时间的变化;②监测森林砍伐、火灾等环境事件的影响范围;③学习GEE脚本编写技巧; 其他说明:此文档提供了详细的代码示例,用户可以根据自己的研究需求调整日期范围、阈值等参数,同时注意代码中的注释部分已被注释掉,如需使用可取消注释。

2025-05-15

Watershed_with_DEM,_split_panel_map_for_visualizing_land_cover_change_(2001_2019).ipynb

GEE教程可视化

2025-05-15

The DEM of Nepal and cloud-free of Sentinel-2 imagery of the year 2021 for Nepal.ipynb

GEE教程可视化

2025-05-15

DEM & cloud-free false-color composite of Sentinel-2 imagery of the year 2021.ipynb

GEE教程可视化

2025-05-15

Visualize_NOAA_GFS_Temperature_Data,_2_2_linked_map_of_Landsat_imagery.ipynb

GEE教程可视化

2025-05-15

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除