自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

qq_31988139的博客

地理信息和卫星遥感云计算专业指导

  • 博客(1994)
  • 资源 (1934)
  • 收藏
  • 关注

原创 Google Earth Engine(GEE)——如何进行NDVI和EVI指数的图表展示?

我们如何进行NDVI和EVI指数的图表展示,我们可以通过建立一个函数NDVI和EVI,然后用map遍历每一期影像,从而实现图表的展示,这我们使用sentinel2影像进行分析。Sentinel-2卫星是由欧洲空间局(ESA)和欧洲联盟开发的一个卫星系统,它可以提供高分辨率和高质量的地球观测数据,特别是在多光谱图像方面。以下是Sentinel-2卫星影像的相关信息:分辨率:Sentinel-2卫星有两个多光谱传感器(MSI),分别具有10米、20米和60米的分辨率。

2023-06-05 11:30:00 4

原创 如何系统的学习it技术?实现弯道超车

IT技术是指信息技术,它涵盖了计算机科学、软件工程、网络技术、数据库管理、信息安全等领域。以下是一些常见的IT技术介绍:1. 编程语言:编程语言是计算机程序员用来编写计算机程序的语言。常用的编程语言包括Java、Python、C++、JavaScript等。2. 数据库管理:数据库管理是指对数据的存储、维护和优化等工作。常用的数据库管理系统包括MySQL、Oracle、SQL Server等。3. 操作系统:操作系统是计算机系统中的核心软件之一,它负责管理硬件资源和提供各种服务。

2023-06-05 06:00:00 10

原创 如何快速进行自学一门编程?

随着信息技术的快速发展,编程已经成为一个越来越重要的技能。那么,我们该如何入门编程呢?

2023-06-04 08:30:00 25

原创 GEE、PIE和AI Earth平台进行案例评测:NDVI计算,结果差异蛮大

PIE获取北京市获取某一个区域的区域的NDVI平均值,但是结果却显示没有,只能通过加载图层点击图层上的点获取某一个点的NDVI值,而且这里用到区域统计使用的函数仅有min,max,sum计算,而使用mean计算,就没有结果。本文主要是通过对比GEE、PIE和AI Earth平台,主要是计算不同平台,同一个NDVI的均值计算,我们已测试结果如何。对特定区域的所有像素进行统计,返回结果为一个JSON对象;目前可完成最大、最小和求和统计计算。默认是影像第一个波段的范围。统计类型,包括最大值、最小值和求和。

2023-06-03 10:30:00 38

原创 Google Earth Engine(GEE)——全球栖息地异质性(数据集包含14个指标)

全球栖息地异质性这些数据集包含14个指标,根据中分辨率成像分光仪(MODIS)获取的增强植被指数(EVI)图像的纹理特征,以多种分辨率量化全球生境的空间异质性。关于这些指标的更多信息以及对其在生物多样性建模中的效用的评价。该数据集以1公里、5公里和25公里的分辨率生成,这里只列出了1公里的资产,只需根据需要用_5公里和_25公里替换_1公里。License。

2023-06-03 09:00:00 35

原创 很多人还在苦苦寻找免费的chatgpt,CSDN创作助手帮你实现快速AI回答

CSDN AI写作助手上线了!InsCode AI 创作助手不仅能够帮助用户高效创作文章,而且能够作为对话式AI回答你想知道的问题。成倍提高生产力!

2023-06-03 06:00:00 60

原创 Google Earth Engine(GEE)——多源遥感数据进行大面积森林生物量估算利用(GEDI+S2+S1)

如果推断模式=2,这是由于使用墙对墙数据预测生物量的模型的不确定性,用L4A的足迹产品进行校准。标准误差为估计平均地上生物量密度的一部分(PE)。方差分量1(V1):由于L4A中使用的田间到GEDI模型导致的平均生物量估计的不确定性。平均地上生物量密度(MU):估计1公里网格单元的平均地上生物量密度,包括森林和非森林。集群的数量(NC):至少有一个高质量波形与网格单元相交的独特GEDI地面轨迹的数量。平均地上生物量密度标准误差(SE):平均估计的标准误差,结合采样和模型的不确定性。

2023-06-02 10:00:00 46

原创 令人惊艳的高效算深度学习算法

用于手写数字识别任务:这段代码使用了TensorFlow库来实现深度学习算法。首先加载MNIST数据集,并将像素值缩放到0到1之间。然后将标签转换为独热编码形式。接着定义了一个包含两个层的神经网络模型,其中第一层是一层扁平化的层,第二层是两层全连接的层。在编译模型时使用了Adam优化器和稀疏分类交叉熵损失函数。最后训练模型、评估模型性能并使用模型进行预测。# 加载数据集# 将像素值缩放到0到1之间# 将标签转换为独热编码形式# 定义模型结构])# 编译模型# 训练模型# 评估模型性能。

2023-06-01 21:16:59 52

原创 Google Earth Engine(GEE)——全球两种主要降水数据集差异对比分析(黄河下游为例)

该算法旨在对所有卫星微波降水估计值进行相互校准、合并和内插,同时还包括微波校准的红外(IR)卫星估计值、降水仪分析,以及可能的其他降水估计值,以精细的时间和空间尺度对全球的TRMM和GPM时代进行估计。全球降水测量的综合多卫星检索(IMERG)是一种统一的算法,它提供来自全球降水测量星座中所有无源微波仪器的数据的降水估计。有时候我们使用不用的数据集会产生不同的结果,今天我们通过对比黄河流域下游两种降水数据的来看两者之间的差异到底如何?这里的主要难点是我们如何确定不同月份的时间日期,

2023-06-01 09:30:00 56

原创 Google Earth Engine(GEE)——全球1公里分辨率下12种土地覆盖

我们的产品提供了全球范围内每个标称的1公里像素内12种土地覆被类别流行程度的准确加权共识信息(南极洲除外)。因此,它在捕捉亚像素土地覆盖信息的能力和对物种分布建模的效用方面超过了单一的基础产品。每个数据集包含12个数据层,每个数据层提供关于一个土地覆盖类别的普遍性的共识信息。使用一个通用的分类方案和一个基于精度的整合方法,我们整合了四个全球土地覆盖产品。这些数据集整合了多个全球遥感衍生的土地覆盖产品,并提供了关于1公里分辨率下12种土地覆盖类别流行程度的共识信息。有关整合方法和数据集评价的其他信息。

2023-06-01 08:00:00 57

原创 Google Earth Engine(GEE)——全球淡水变量

该数据集由标准化的1公里网格中的近乎全球的、空间上连续的和特定淡水的环境变量组成。我们沿HydroSHEDS河流网络为每个网格单元划定了子流域,并使用各种指标(平均值、最小值、最大值、范围、总和、反距离加权平均值和总和)对每个网格单元的上游环境(气候、地形、土地覆盖、地表地质和土壤)进行总结。我们沿HydroSHEDS河流网络为每个网格单元划定了子流域,并使用各种指标(平均值、最小值、最大值、范围、总和、反距离加权平均值和总和)对每个网格单元的上游环境(气候、地形、土地覆盖、地表地质和土壤)进行总结。

2023-06-01 00:45:00 51

原创 Google Earth Engine(GEE)——全球光伏发电目录(2016-2018)

自2009年以来,光伏(PV)太阳能发电能力每年增长41%。作者进一步找到并核实了68,661个设施,在以前可获得的资产层面的数据上,增加了432%(设施数量)。在手工标记的测试集的帮助下,我们估计2018年底全球发电装机容量为423千兆瓦(-75/+77千兆瓦)。对于超过10,000平方米(约600千瓦)的装置,相对于我们的测试集,实现的精度为98.6%,召回率略有折损,下降到90%(补充图6)。对于超过10,000平方米的装置,最终数据集的IoU为90%--足以满足基于用户报告的广泛用途。

2023-05-31 12:00:00 64

原创 Google Earth Engine(GEE)——提取指定矢量集合中的NDVI值并附时间属性

本教程的主要目的是实现影像转化为数组,然后我们需要直到其转化为的数组的轴,然后根据轴的信息进行切片,切片后完成时间属性的标准转化,这里一定要对影像结果提取完成后再对矢量集合进行操作,最后就可以提取指定的属性信息。阵列排序对于获得自定义质量的马赛克非常有用,这涉及到根据不同波段的值reduce图像波段的子集。下面的例子按NDVI排序,然后得到集合中NDVI值最高的观测值子集的值:与线性建模的例子一样,使用arraySlice()沿波段轴将感兴趣的波段与排序索引(NDVI)分开。

2023-05-31 09:30:00 65

原创 Google Earth Engine(GEE)——ndvi.gt is not a function

我试图通过屏蔽值的上下 10 个百分位数来消除计算出的 NDVI 数据集中的异常值,但我在第 398 行中不断收到错误消息,显示。问题1:Line 398: ndvi.gt is not a function。我怎样才能解决这个问题?

2023-05-31 07:13:25 74

原创 Google Earth Engine(GEE)——全球参考蒸散量图层和全球参考蒸发量

在几个估计PET的方程中,粮农组织对Penman-Monteith方程(Allen等人,1998年)的应用,这里称为FAOPM,目前被广泛认为是一种标准方法(Walter等人,2000年)。全球干旱指数(Global-Aridity_ET0)和全球参考蒸发量(Global-ET0)第三版数据集提供了1970-2000年期间高分辨率(30角秒)的全球栅格气候数据,与潜在植物生长的蒸发过程和降雨量不足有关,基于参考作物的Penman Monteith蒸发量方程式的实施。你可以在这里阅读该论文。

2023-05-30 16:40:41 77

原创 Google Earth Engine(GEE)——全球钢铁生产基地数据库生产类型、工厂类型、产能和生产起始年

一级钢铁生产过程(高炉、碱性氧气炉或露天炉),通常使用煤炭作为能源,在大型综合设施中进行。而二级钢铁生产过程(电弧炉)通常使用电力作为能源,在所谓的 "小型工厂 "中进行。该数据库涵盖了整个钢铁生产过程中的各种资产,包括原材料的采购和加工(特别是焦化和球团化工厂)、粗钢生产(综合工厂和小型工厂)和钢铁成品的生产(下游工厂)。全球钢铁生产资产数据库提供目前正在运行的全球钢铁生产厂的信息。该数据库包含1,598家生产厂,有确切的地理位置,并提供有关所有权、生产类型、工厂类型、产能和生产起始年(如有)的信息。

2023-05-30 09:00:00 69

原创 【无标题】

GEE代码库(https://code.earthengine.google.com/)是一个共享的代码库,其中包含了很多用GEE编写的实用代码和应用程序。开题先写一下关于自己的成就,顺便测试下上次星火发布的AI模型,于是问问自己的情况,结果发现太难了,除了夸的美丽,其它的基本上就是惊喜。总之,此星光明是一位非常优秀的Java开发工程师和技术博主,他的成就和贡献得到了广泛的认可和赞誉。以上是此星光明的部分专栏,他还会不断更新和推出新的专栏,为广大开发者提供更多的学习和参考资源。

2023-05-30 05:00:00 69

原创 如何发现和解决无效数据?

无效数据是指不符合特定要求或标准的数据,这些数据可能是错误的、不完整的、过时的、重复的或无法识别的。无效数据可能会对数据分析和决策造成负面影响,因此在数据处理和管理中,需要及时识别和清除无效数据。无效数据会对数据分析和决策造成影响,因为它们可能导致错误的结论和决策。例如,如果一个数据集中包含大量的错误数据,那么在对其进行分析时,可能会得出不准确的结果,从而影响业务决策。

2023-05-30 01:15:00 111

原创 Google Earth Engine(GEE)——全球海上风力发电机组数据集

进行了算法性能分析和验证,使用独立的验证数据集,提取准确率超过99%。该数据集包括两个内容,包括验证数据集,只有位置数据集已经被摄入,验证数据集可以下载。位置数据集包括从2015年到2019年的哨兵一号合成孔径雷达(SAR)时间序列图像中得出的全球海上风力涡轮机(OWT)的地理编码信息。属性和元数据的组织以WGS84为基准,每条记录包括七个属性:中心纬度(centr_lat)、中心经度(centr_lon)、大陆、国家、海域(sea_area)、外观年(occ_year)和月(occ_month)。

2023-05-30 00:00:00 70

原创 【无标题】

在这里,我们从15年来的每天两次的MODIS卫星图像中开发了新的接近全球的、细粒度(≈1公里)的月度云层频率,揭示了以前没有记载的全球复杂的云层时空动态。我们证明,云层在其地理异质性方面有很大的变化,与常用的内插气候数据相比,云层衍生指标的直接、基于观测的性质可以改善对生境、生态系统和物种分布的预测,减少空间自相关性。云覆盖频率数据集V1.0测量了超过15年的每天两次的MODIS图像,以分析和量化云的动态和云的预测区域。该研究建立了云林、动态的时间变化基线,并允许用户确定成像的时间窗口和无云快照。

2023-05-29 17:53:50 71

原创 Google Earth Engine(GEE)——用填充后的Landsat7影像进行LST地表温度计算(C值转化为K值)

很多时候我们在长时间序列的研究中会忽略使用Landsat7 因为充满条带,而且在使用的时候我们因为需要填充,所以比较麻烦,但是我们今天使用一个填充函数来快速实现后,然后进行下一步ndvi和LST的计算。函数:这里影像填充函数时间设定的是一年前后影像当期的,然后通过线性来计算结局和斜率最后让填充影像填入按照这个方式来进行计算,

2023-05-29 09:00:00 81

原创 Google Earth Engine(GEE)——影像重投影后发现没有发生变化,解决方案ee.Image.random的使用

原始影像:seed在每个像素位置生成一个随机数。当使用 "均匀 "分布时,输出在[0到1]的范围内。使用'正态'分布,输出有μ=0,𝛔=1,但没有明确的限制。在每个像素位置生成一个随机数。当使用 "均匀 "分布时,输出在[0到1]的范围内。使用'正态'分布,输出有μ=0,𝛔=1,但没有明确的限制。

2023-05-29 00:00:00 79

原创 Google Earth Engine(GEE)——全球风力和太阳能发电站位置和功率数据集

虽然全球土地规划者承诺将更多地球上的有限空间用于风能和太阳能光伏发电,但关于目前基础设施的位置的信息却很少。最近的研究大多使用土地对风能和太阳能的适用性,加上技术和社会经济限制,作为实际位置数据的替代。在这里,我们解决了这个缺陷。利用容易获得的OpenStreetMap数据,我们提出了,据我们所知,第一个全球性的、开放的、统一的风能和太阳能装置的空间数据集。我们还包括用户友好的代码,使用户能够轻松地创建新版本的数据集。我们预计这些数据将在全球能源系统去碳化的未来潜力和权衡的研究中产生广泛的兴趣。

2023-05-28 14:00:00 78

原创 Google Earth Engine(GEE)——建立一个影像如何重投影抽分类按照自己设定的分辨率和投影系统

我们在进行应先格投影和分类的过程中,我们需要两个参数,一个是投影系统另外一个是分辨率,我们这里举一个简单的例子,建立一个研究区,然后分别设定两个参数,scale也就是分辨率,另外一个定义crs就是投影参数,另外我们就可以根据影像经纬度设定影像的参数,最后裁剪影像即可获得研究区的重投影的结果。

2023-05-28 12:30:00 76

原创 一步之遥:从python小白到精通大神,如何快速学习python?

人生苦短,我用Python。欢迎大家一起分享,你是如何入门Python的~

2023-05-27 16:00:00 84

翻译 Google Earth Engine(GEE)——连续变化检测和分类(CCDC)

连续变化检测和分类(CCDC)是一种土地变化监测算法,旨在对卫星数据的时间序列进行操作,特别是陆地卫星数据。本章的重点是变化检测部分(CCD);你将学习如何运行该算法,解释其输出,以及可视化系数和变化信息。学习成果探索陆地卫星观测数据的像素级时间序列,以及CCDC与观测数据拟合的时间段。可视化空间中的时间段的系数。可视化由检测到的时间段产生的预测图像。可视化变化信息。使用阵列图像功能。在输出时将用户定义的元数据附加到图像上。"时间序列是一连串按时间顺序进行的观察。

2023-05-27 07:30:00 116

原创 粉丝很多铁粉却不到10%,如何收获铁粉?

"铁粉"是指某个人或组织的忠实粉丝或支持者。这个术语最初起源于科技行业,用来形容针对某个特定品牌、产品或人物的极度狂热粉丝,通常表现为无条件的崇拜和支持。现在,这个术语已经扩展到各个领域,包括政治、体育、娱乐等。铁粉是指非常喜欢并支持某个人或某个品牌的粉丝。在CSDN中,铁粉通常指非常喜欢并支持CSDN网站的用户,这里指的就是我们的博主。

2023-05-26 21:22:47 96

原创 Google Earth Engine(GEE)——如何给矢量集合中矢量添加属性

我们很多时候会需要在线添加属性信息,其实本质上就是添加一个字典,分别设定一个key:value进行添加即可。properties。

2023-05-26 10:00:00 86

原创 SenseEarth 3.0智能遥感分析及地理信息应用云平台

区别于传统栅格数据,“商汤地界”除了提供传统遥感影像以外,还提供成套的结构化矢量数据,非常直观的看到各类地物的情况,可直接用于分析,帮助用户解决业务问题,大幅降低遥感的应用成本和知识门槛,开创遥感技术全新的应用模式。这个本质上还是一个交互式云平台操作界面,主要还是存放了一些已经处理好的数据在云平台上,方便利用这些已有的影像进行相应算法的分析,该平台主要集成了4个大的模块,分别是地物分类、变化监测、目标监测和数据提升,土地分类中提供了25种分类地物,我们可以自己上传影像,或者选择在线已有影像进行分类。

2023-05-25 08:00:00 104

原创 Google Earth Engine(GEE)——Segmentation.seedGrid和SNIC (Simple Non-Iterative Clustering)案例和错误缺少特征错误分析

问题:混淆矩阵(错误)Collection.errorMatrix:缺少特征“1_1_1_1_1_1_2_0”的属性“B1_mean”。上面这个问题是别人没有共享数据造成的下面这个问题是我们本身并没有提取到平均值,所以才会出现缺失,是因为波段名称不同这里解决方案,我们在进行分割种子网格后波段名称回改编成B.*_mean,另外一种事将变量名称重新命名回原有的波段,这样就可以提取了这个过程就是我们提取的波段,reduceregion这个过程中你得看器具体的名称。

2023-05-24 13:15:00 108

原创 Google Earth Engine(GEE)——全球卫生站点数据库

归属:您必须按照ODbL中规定的方式对数据库的任何公开使用或由数据库产生的作品进行归属。对于数据库的任何使用或再分发,或由其产生的作品,你必须向他人明确说明数据库的许可,并保持原始数据库上的任何声明。保持开放:如果你重新发布该数据库或其改编版本,那么你可以使用限制作品的技术措施(如数字版权管理),只要你也重新发布一个没有这种措施的版本。同类共享:如果你公开使用该数据库的任何改编版本,或由改编数据库产生的作品,你也必须根据ODbL提供该改编数据库。适应: 适应数据库:修改、转换和建立在数据库之上。

2023-05-24 09:00:00 92

原创 Google Earth Engine(GEE)——求指定区域的NDVI时序变化和不同值域范围内的像素数量及其面积

本程序原理很简单,主要就是选定指定的研究区进行NDVI6-8年的时序分析,并求出指定时序范围内的的值。当然再计算每月的过程中,我们肯定会用到map循环遍历每一年月份的图表,通过使用linearfit来计算斜率,通过选择指定阈值范围内的斜率来计算不同范围内的像素值。这里可以差异化加载不同阈值范围内的影像,也就是分段表示不同颜色。这里再设定图表的时候,我们因为时间时默认的所以我们这里可以通过设定一个函数将时间转化为指定格式的标准时间。

2023-05-23 09:00:00 257 2

原创 Google Earth Engine(GEE)——全球采矿区和验证数据集

在本文中,我们通过对卫星图像的视觉解读,提出了一个新的采矿范围的数据集,为填补这一空白做出了贡献。多边形由专家使用Sentinel-2无云数据(https://s2maps.eu,由EOX IT Services GmbH提供(包含经修改的Copernicus Sentinel数据2017 & 2018))和谷歌卫星和Bing Imagery提供的极高分辨率卫星图像进行划定。得出的多边形涵盖了采矿活动直接使用的土地,包括露天开采、尾矿坝、废石堆、水塘和加工基础设施。从控制点计算出的总体精度为88.4%。

2023-05-22 10:00:00 127

原创 Google Earth Engine(GEE)——Collection.first: Error in map Image.reduceRegion: Too many pixels in the

很多时候我们再进行大面积计算的时候,用到高分辨率影像,但是统计的面积超过了其运算给的最大面积,这时候我们要调整一些参数。要么我们选择缩小研究区,要么我们再导出时进行分辨率放大或者设定 'bestEffort'和'maxPixels'进行像素扩大。or both.原始代码:reducerscalexProperty。

2023-05-22 09:45:00 117

原创 Google Earth Engine(GEE)——从列表中少选所需要的数字不用map函数,还能如何实现?简单方法介绍

问题:不幸的是,我被一个简单的任务所困。我想根据另一个列表的值来过滤一个列表中的元素。

2023-05-21 09:00:00 109

原创 VR vs AR到底谁更有潜力改变未来?

VR(虚拟现实)可以在多个领域带来进步和革新,以下是其中一些方面:1. 游戏和娱乐:VR可以提供沉浸式的游戏和娱乐体验,使用户能够完全融入虚拟环境中。这将使游戏变得更加真实,增加用户的参与感和娱乐性。2. 教育和培训:VR可以用于模拟现实环境,如飞行模拟器、医学手术模拟等。这将使学生和培训者能够在安全的环境中学习和练习,提高效率和准确性。3. 艺术和文化:VR可以用于创造虚拟艺术和文化体验,如虚拟博物馆、虚拟音乐会等。这将使用户能够在任何地方随时欣赏艺术和文化作品,提高文化交流和传播的效率。

2023-05-21 00:00:00 122

原创 Google Earth Engine(GEE)——使用MODIS数据单点测试SG滤波和harmonics method 滤波的差异分析

谐波方法滤波(Harmonics method filtering)是一种对信号进行滤波的方法,它是在傅里叶变换的基础上实现的。在通过乘上窗函数实现滤波后,再将处理后的信号进行傅里叶反变换,就可以得到时间域上的信号。谐波方法滤波可以减小信号的谐波干扰,有效的提高信号的质量。SG滤波(Savitzky-Golay滤波)是一种数字信号处理滤波方法,适用于平滑离散数据并减少噪声。它采用局部多项式拟合,对每个数据点进行加权平均,并使用该平均值作为该点的滤波结果。

2023-05-20 12:30:00 117

原创 Google Earth Engine(GEE)——统一的全球夜间灯光数据集(1992-2020年)

在这项研究中,我们通过协调来自DMSP数据的相互校准的NTL观测数据和来自VIIRS数据的模拟的类似DMSP的NTL观测数据,在全球范围内生成了一个综合的、一致的NTL数据集。这个时间上扩展的DMSP NTL数据集为与人类活动有关的各种研究提供了宝贵的支持,如电力消耗和城市范围动态。在这项研究中,作者通过协调来自DMSP数据的相互校准的NTL观测值和来自VIIRS数据的模拟的类似DMSP的NTL观测值,在全球范围内生成了一个综合的、一致的NTL数据集。统一的全球夜间灯光(1992-2020年)

2023-05-19 09:30:00 135

原创 Google Earth Engine(GEE)——如何给地图添加一个不同底图

很多时候我们会困惑与GEE中没有其它底图可供加载,在GEE中仅仅提供了两个底图,一个是矢量底图,另外一个是卫星底图,并伴随着添加地形和地理名称的地图展示,今天我们将展示如何添加一个底图加载到GEE上,其实本质上就是添加一个变量,然后直接加载就行,这里仅需要GEE当中的一个函数:Map.setOptions(mapTypeId, styles, types)Modifies the Google Maps basemap. Allows for:1) Setting the current MapType.

2023-05-19 09:15:00 121

原创 Google Earth Engine(GEE)——全球固定宽带和移动(蜂窝)网络性能数据集

在Z=1的时候,瓦片在垂直和水平方向上被分成两半,形成4个覆盖全球的瓦片。为了满足数据主体访问请求(DSAR),数据将被定期重新分类,这在某些司法管辖区的法律中是适用的,包括但不限于《通用数据保护条例》(GDPR)、《加州消费者隐私法案》(CCPA)和《Lei Geral de Proteção de Dados》(LGPD)。这对于在空间上连接多个时期(季度)的数据、在不使用地理空间函数的情况下创建更粗略的空间聚合、空间索引、分区以及存储和推导瓦片几何形状的替代方法都很有用。

2023-05-19 08:00:00 108

全球采矿区域边界数据集(1km)-v2-30arcsecond.tif

此数据集更新 https://doi.org/1.10/PANGAEA.1594 中可用的全局比例挖掘多边形(版本 910894)。它包含 44,929 个面要素,覆盖全球采矿业使用的 101,583 平方公里土地,包括大规模、手工和小规模采矿。面涵盖与采矿相关的所有地面要素,例如露天采矿、尾矿坝、废石堆、水池、加工基础设施以及与采矿活动相关的其他土地覆盖类型。数据是使用与第一版类似的方法,通过卫星图像的视觉解释得出的。研究区域仅限于标准普尔金属和采矿数据库中报告的10,34个采矿坐标周围的820公里缓冲区。我们使用 2019 年 Sentinel-2 无云马赛克对矿区进行了数字化,空间分辨率为 10 米(由 EOX IT Services GmbH https://s2maps.eu - 包含修改后的哥白尼哨兵数据 2019)。我们还咨询了Google Satellite和Microsoft Bing Imagery,但只是作为帮助确定与采矿活动相关的土地覆盖类型的附加信息。主要数据集由一个地理包 (GPKG) 文件组成,其中包括以下变量:ISO3_CODE<字符串>、COUNTRY

2023-05-28

《remote sensing》期刊中,所有使用GEE汇总的文章

The Google Earth Engine (GEE) is a cloud computing platform designed to store and process huge data sets (at petabyte-scale) for analysis and ultimate decision making [1]. Following the free availability of Landsat series in 2008, Google archived all the data sets and linked them to the cloud computing engine for open source use. The current archive of data includes those from other satellites, as well as Geographic Information Systems (GIS) based vector data sets, social, demographic, weather,

2023-05-26

Google PaLM 2 技术手册

我们介绍PaLM 2,这是一个新的最先进的语言模型,比其前身PaLM(Chowdhery等人,2022)具有更好的多语言和推理能力,而且计算效率更高。PaLM 2是一个基于Transformer的模型,使用类似UL2的混合目标进行训练(Tay等人,2023)。通过对英语和多语种语言以及推理任务的广泛评估,我们证明了PaLM 2在不同模型规模的下游任务上具有明显的质量改进,同时与PaLM相比表现出更快、更有效的推理。这种效率的提高使我们能够更广泛地 的部署,同时也使模型能够响应更快,以实现更自然的互动速度。PaLM 2展示了强大的推理能力,其例子是 在BIG-Bench和其他推理任务上比PaLM有很大的改进。PaLM 2在一系列的人工智能评估中表现出稳定的性能。在一套负责任的人工智能评估中表现出稳定的性能,并且能够在推理时间控制毒性,而不需要额外的开销或影响到 其他能力。总的来说,PaLM 2在一系列不同的任务和能力中实现了最先进的性能。

2023-05-12

用Google Earth Engine评估生物量

Estimating Aboveground Biomass Using Remote Sensing Data and Google Earth Engine

2023-01-25

LauraDuncanson-GEOTREES.pdf

GEDI数据分析文本介绍PPT,全球生物量数据

2023-01-25

山西煤矿和产能划分情况.docx

山西煤矿和产能划分情况.docx

2022-12-02

国家高水平英语测试题.docx

国家高水平英语测试题.docx

2022-12-02

班戈大学宣传手册BU-UG-Prospectus-2022-ENGLISH.pdf

班戈大学宣传手册BU-UG-Prospectus-2022-ENGLISH.pdf

2022-11-30

测量学专业英语词汇.docx

测量学专业英语词汇.docx

2022-11-30

2017考研复试英语口语面试常用句式总结.docx

2017考研复试英语口语面试常用句式总结.docx

2022-11-30

专家推荐表信(矿大)模版

专家推荐表信(矿大)模版

2022-11-30

eSurvey4.0文件.pdf

eSurvey4.0文件.pdf

2022-11-30

云贵高原降水时空分布系统汇总.rar

云贵高原降水时空分布系统汇总.rar

2022-11-30

云贵高原时空降水分布系统DesktopWindowsApplication.zip

云贵高原时空降水分布系统DesktopWindowsApplication.zip

2022-11-30

云贵高原降水时空分布系统材料.rar

云贵高原降水时空分布系统材料.rar

2022-11-30

云贵高原降水时空分布系统.rar

云贵高原降水时空分布系统.rar

2022-11-30

各种片头片尾素材.rar

各种片头片尾素材.rar

2022-11-30

《测量学》模拟试卷.doc

《测量学》模拟试卷.doc

2022-11-30

水利工程测量上课PPT.pptx

水利工程测量上课PPT.pptx

2022-11-30

2020教学工作案例模版.rar

2020教学工作案例模版.rar

2022-11-30

专升本英语资料.rar

专升本英语资料.rar

2022-11-30

案例-辞职报告.docx

案例-辞职报告.docx

2022-11-30

专升本所需的备战材料.rar

专升本所需的备战材料.rar

2022-11-30

Getting Started with Google Earth Engine.pdf

GEE学习教程PPT

2022-11-18

Custom-script-tutorial.pdf

在EO浏览器中创建有用和漂亮的卫星可视化教程

2022-10-18

Earth Engine UI Coding (tinyurl.com-g4g-ui-coding).pptx

Earth Engine UI Coding (tinyurl.com-g4g-ui-coding).pptx

2022-10-15

Apps and User Interfaces in Google Earth Engine.mp4

Apps and User Interfaces in Google Earth Engine.mp4

2022-10-15

Introducing Next Generation PlanetScope 8-band Imagery.mp4

Introducing Next Generation PlanetScope 8-band Imagery.mp4

2022-10-15

全国森林资源统计(摘要).pdf

全国森林资源统计(摘要).pdf

2022-10-15

KTH-CSC joint scholarship programme 2022.pdf

KTH-CSC joint scholarship programme 2022.pdf

2022-10-15

Text for GDPR CSC申请条例.pdf

Text for GDPR CSC申请条例.pdf

2022-10-15

《遥感学报》参考文献Nednote格式.rar

《遥感学报》参考文献Nednote格式.rar

2022-10-15

2005 ~ 2015 年 CERN 光合有效辐射数据集介绍.pdf

2005 ~ 2015 年 CERN 光合有效辐射数据集介绍.pdf

2022-10-15

海南航空资本运营分析.docx

海南航空资本运营分析.docx

2022-10-15

Introduction to Remote Sensing EndtoEnd Google Earth Engine

Introduction to Remote Sensing EndtoEnd Google Earth Engine

2022-10-15

gee-Landsat影像 随机森林分类代码

gee-Landsat影像 随机森林分类代码

2022-10-15

gee landsat 数据预处理第一部分

gee landsat 数据预处理第一部分

2022-10-15

Overview of Apps and User Interfaces in Google Earth Engine GEE

Overview of Apps and User Interfaces in Google Earth Engine GEE

2022-09-26

csc-um_phd_programme_application_form.docx

csc-um_phd_programme_application_form.docx

2022-06-07

Forest carbon sink neutralized by pervasive growth-lifespan trad

When using this dataset please cite: Brienen et al. 2020. Forest carbon sink neutralized by pervasive growth-lifespan trade-offs. Nature communications? Metadata_Brienen_et_al_2020 Variables: Dataset = Publication reference or dataset reference; see also Supplementary Table 1. Site_id = Unique site identifier; in case of ITRDB data this is the name of the decadal (襎ucson? datafile Latitude = site Latitude Longitude = site longitude genus.species = Species name spp_short = shortened spec

2022-06-07

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除