- 博客(4095)
- 资源 (1934)
- 收藏
- 关注
原创 GEE问题:影像面积统计的时候出现面积等于0(area=0)该如何解决?
在Google Earth Engine (GEE)中进行面积统计时,可能会遇到统计结果为0的情况,即使加载的MASK影像显示有数据。这通常是因为使用了reduceRegion函数,并且MASK影像的值为0。为了解决这个问题,可以通过对MASK影像进行处理,使其值不为0。例如,可以使用add函数将MASK影像的值增加1,然后再进行统计。此外,在进行面积统计时,如果未指定geometry参数,系统会报错,因为需要明确统计的区域边界。因此,必须在使用reduceRegion时提供geometry参数,以确保统计
2025-05-16 09:30:00
231
原创 GEE生物量碳密度:基于多源遥感数据,实现海南区域生物量碳密度的时空特征分析和可视化。
通过本方法,可快速获取区域尺度的生物量碳密度分布特征,为应对气候变化提供关键数据支持。完整代码链接(https://code.earthengine.google.com/ba4cb1f52477a2e4e94e526f03cbb9eb),欢迎交流改进。本文以海南岛为研究对象,利用Google Earth Engine平台,整合多源遥感数据,实现区域生物量碳密度的时空特征分析。本方法可为热带岛屿生态系统碳汇评估提供技术支撑。
2025-05-16 08:00:00
4
原创 GEE案例:基于Sentinel-1 GRD数据的葡萄牙里斯本区域的洪水风险预测
本文分析了一个基于Google Earth Engine (GEE)平台的洪水监测与评估脚本。该脚本通过处理Sentinel-1 SAR数据,分析洪水前后的地表变化,评估受影响区域的洪水范围及其对人口、农田和城市的影响。主要步骤包括:设置日期和SAR参数、加载和预处理数据、计算洪水范围和面积、评估受影响的土地和人口,并将结果可视化。脚本通过一系列图像处理和分析算法,生成洪水掩膜、计算暴露人口数量、受影响的农田和城市面积,最终将结果显示在地图上,并添加图例以便于理解。该脚本为洪水灾害的快速监测和评估提供了有效
2025-05-15 17:15:00
11
1
原创 GEE案例:分析和可视化车辆电池(包括电动和普通)由于城市地区地表温度(LST)而面临潜在风险
本存储库提供了一套基于谷歌地球引擎(GEE)的代码,用于分析和可视化城市道路中车辆电池(包括电动和普通)因地表温度(LST)而面临的潜在风险。代码通过处理Landsat 8和9的影像数据,计算地表温度,并结合官方县界和道路网络数据,识别出道路温度可能对电池构成风险的区域。主要功能包括城市边界定义、LST数据处理、道路温度分析、电池风险分类、空间可视化以及数据导出。用户可通过调整日期范围和温度阈值,自定义分析条件,并生成风险地图和CSV文件,便于进一步研究和决策。该工具为城市规划和车辆管理提供了科学依据,帮助
2025-05-15 14:28:38
376
原创 GEE 训练教——利用MODIS MOD16A2数据ET(蒸散发数据)的时序图表分析
GEE 训练教——利用MODIS MOD16A2数据ET(蒸散发数据)的时序图表分析MODIS MOD16A2数据是美国国家航空航天局(NASA)的MODIS传感器所获取的陆地蒸散发和植被蒸腾量数据。该数据集提供了全球范围内每日和年度的蒸散发和植被蒸腾量数据,以及其他相关的地表水文过程数据。MOD16A2数据基于多种遥感数据和模型算法,可以用于监测陆地的水分循环和蒸散发过程。
2025-05-15 13:33:14
21
原创 美国宇航局 CDDIS 提供的地面多普勒卫星轨道摄影和无线电定位 (DORIS) 地球定向参数时间序列产品
卫星综合多普勒轨道测绘与无线电定位 (DORIS) 地球定向参数时间序列产品,源自美国宇航局地壳动力学数据信息系统 (CDDIS)。DORIS 是一个双频多普勒系统,由卫星上的接收器和全球分布的地面信标网络组成。轨道卫星上的 DORIS 接收器跟踪地面信标网络发射的双频无线电信号并生成 DORIS 数据。当卫星轨道经过地面信标时,会测量多普勒频移或绝对相位。DORIS 数据记录包含带时间标记的距离率测量值及其相关辅助信息。来自全球网络的 DORIS 观测数据可用于多种产品。
2025-05-15 13:27:37
287
原创 Google Earth Engine (GEE) :通过Landsat 8影像来分析城市热应激(UHI)区域——英国伦敦为例
本文介绍了如何利用Google Earth Engine (GEE)平台和Landsat 8影像分析城市热应激区域。首先,定义感兴趣区域并筛选符合条件的Landsat影像,计算土地表面温度(LST)。接着,提取城市区域的LST数据,并进行统计分析。通过随机森林算法训练分类器,将区域分为低、中、高和极端热应激等级,最终可视化分类结果。该方法为城市规划和环境管理提供了有效的遥感数据分析支持。
2025-05-15 09:00:00
82
原创 GEE数据集:美国火灾数据集LANDFIRE(LF)景观火灾和资源管理规划工具
LANDFIRE(LF),景观火灾和资源管理规划工具,是美国农业部林务局、美国内政部地质调查局和自然资源保护协会共同开展的项目。LANDFIRE (LF) 图层是基于广泛的实地参照数据、卫星影像和生物物理梯度层,使用分类和回归树构建的预测景观模型创建的。您可以在这里阅读 Landfire 2023 的更新信息。LANDFIRE 2023 更新(LF 2023)代表了持续向年度更新和降低延迟目标迈进的重要一步。
2025-05-15 08:00:00
628
原创 GEE教程:如何利用 GEE 的强大功能来分析和展示土壤特性(OpenLandMap/SOL/SOL_TEXTURE-CLASS_USDA-TT_M/v02数据)并且可视化土壤深度
接下来,我们定义可视化参数,以便在地图上清晰地显示土壤纹理类别。我们将选择一个调色板,并设置最小值和最大值,以适应土壤纹理类别的范围。min: 1.0,max: 12.0,我们将研究区域设置为整个印度。可以使用现成的矢量文件来定义该区域。我们为不同深度的土壤纹理定义调色板和名称,以便在图例中显示。
2025-05-14 19:10:37
12
1
原创 巴西亚马逊地区树叶和大气二氧化碳中的 LBA-ECO CD-02 碳和氮同位素
本数据集记录了2004年和2006年旱季期间,在巴西亚马逊州马瑙斯附近的INPA ZF2保护区进行的叶片组织和大气CO2的13C/12C、15N/14N比值及碳氮浓度的研究。数据包括三个CSV文件:大气气体样本的13C数据、叶片样本的13C和15N数据,以及气象和CO2通量数据。研究在冠层不同高度采集叶片样本,并在三个位置的不同高度采集大气空气样本。此外,还包含来自高原KM34塔的同步气象、大气CO2和CO2通量测量数据。数据集提供了详细的样本采集信息、测量方法和数据格式,为研究亚马逊森林碳氮循环提供了重要
2025-05-14 19:06:05
562
原创 GEE土地分类:利用Hansen全球森林数据统计指定缓冲区内的的森林与非森林面积
本文介绍了如何利用Google Earth Engine (GEE) 平台分析阿尔及利亚Sidi Abdallah地区的森林与非森林数据。通过定义感兴趣区域(ROI),加载Hansen全球森林变化数据集,计算当前森林覆盖,并创建森林/非森林分类图层,文章详细展示了数据处理流程。此外,文章还介绍了如何添加高分辨率Sentinel-2影像、计算区域统计数据、导出分类图和NDVI数据,最终为森林管理和环境保护提供了重要支持。
2025-05-14 09:00:00
14
原创 GEE图表:基于ERA5 气候数据来计算特定区域内的温度变化和时序图表
首先,我们需要定义一个研究区域。我们使用一个多边形来表示该区域。})]);
2025-05-14 08:00:00
445
原创 GEE 训练教程——使用 paint() 将矢量几何图形转换为图像
使用 paint() 将矢量几何图形转换为图像。* 这会生成一条 “瘦 ”线,用 8 邻域表示。* 此外,所有特征都将在像素中具有相同(指定)的数值。* 图像分辨率以像素为单位(即不指定比例)。
2025-05-13 11:40:31
112
1
原创 LBA-ECO CD-02 亚马逊大气二氧化碳中的碳和氧同位素:1999-2004
该数据集记录了1999年至2004年间在亚马逊流域多个森林、牧场及自由对流层收集的大气二氧化碳(CO2)的碳氧稳定同位素比值。数据包括三个ASCII文件,分别记录了森林、牧场和对流层的CO2浓度及同位素特征。采样地点覆盖亚马逊州、帕拉州和朗多尼亚州,采样时间包括白天和夜间。2003年5月,飞机在亚马逊河/塔帕若斯河等区域进行了五天飞行,采集了对流层CO2样本。数据通过分析CO2的碳氧同位素比值,监测了陆地生态系统的碳交换过程,特别是环境条件变化和土地利用变化对生态系统同位素鉴别的影响。该研究对于理解陆地生态
2025-05-13 11:31:21
726
原创 GEE 图表:使用GEE处理MODIS MCD19A2数据,并导出2023年季节性平均AOD数据并可视化对比047和055波段的时序差异
首先,我们定义研究区域(AOI),并将地图居中显示在该区域。通过以上步骤,您可以轻松地使用GEE处理MODIS MCD19A2数据,并导出2023年季节性平均AOD数据。这些数据可以用于气候研究、空气质量监测等领域。如果有任何问题,欢迎随时联系作者。
2025-05-13 08:00:00
263
原创 GEE数据提取:提取特定区域的CHIRPS降水数据,并将结果导出为CSV文件
首先,我们需要定义一个感兴趣的地理位置。// 边界城市在这段代码中,我们使用定义了一个点,并通过方法从城市边界数据集中筛选出与该点相交的城市边界。接下来,我们需要定义我们感兴趣的时间范围。//--------时间-------------------------------------------------------通过以上步骤,我们成功地使用Google Earth Engine提取了特定区域的降水数据,并将结果导出为CSV文件。这一过程展示了GEE在气候数据分析中的强大能力。
2025-05-12 12:53:31
32
1
原创 亚马逊盆地塔帕若斯河与亚马逊河交汇处气象数据集分析
该数据集包含 2001 年 7 月和 8 月在巴西圣塔伦附近亚马逊盆地塔帕若斯河与亚马逊河交汇处附近收集的气象数据。边界层和高空测量数据由声学测深仪-声雷达仪、带光学经纬仪的探空气球和无线电探空仪收集。无线电探空仪除了测量风速和风向外,还测量了气压、温度和相对湿度。测量数据由五个当地站以不同的频率进行。该数据集包含 41 个逗号分隔的数据文件。数据集附带的支持信息包括:天气预报:天气预报用于确定 CIRSAN 实验期间气球飞行的有利条件,并帮助确定无线电探空仪的发射频率。
2025-05-12 12:46:55
646
原创 GEE APP——第一个用于模拟未来全球城市扩张的细胞自动机(CA)在线工具,它可以在不同的 SSP 情景下,以 30 米的分辨率模拟未来城市土地的变化(分屏可拖动)
预测全球城市扩张对气候变化情景下的环境评估至关重要。然而,由于数据和计算能力的限制,现有的全球未来城市用地产品通常分辨率较低(1 公里)。这阻碍了在更精细的尺度上对全球城市发展的影响进行准确评估。因此,我们在谷歌地球引擎(GEE-CA)中开发了第一个用于模拟未来全球城市扩张的细胞自动机(CA)在线工具,它可以在不同的 SSP 情景下,以 30 米的分辨率模拟未来城市土地的变化。GEE-CA 可通过分区并行策略对未来城市用地进行高分辨率无缝模拟。
2025-05-12 08:00:00
400
原创 GEE教程:基于MODIS的地表温度(LST)数据,并生成一个动画GIF
首先,我们需要定义一个感兴趣的区域。我们将使用一个点和一个多边形来表示该区域。region =接下来,我们从FAO的GAUL数据集中加载国家边界,并将其添加到地图上。// 将国家边界添加到地图我们定义LST的可视化参数,以便为动画帧创建可视化图像。min: 13000, // 根据开尔文调整LST范围max: 16500, // 根据开尔文调整LST范围palette: ['D70404'],
2025-05-11 13:39:04
30
1
原创 GEE图表分析:指定面积NDWI水体面积变化分析
首先,我们需要定义一个多边形区域,作为我们分析的基础。[76.68656121150454, 12.595724516920036] // 闭合多边形// 将ROI添加到地图上// 将地图中心移动到ROI通过以上步骤,我们成功地定义了感兴趣区域,加载了MODIS影像数据,计算了NDWI,并估算了湖泊面积随时间的变化。这些分析为我们理解内蒙古河口镇的水体变化提供了重要的科学依据。希望这篇博客能够帮助您更好地利用Google Earth Engine进行环境监测和分析!定义感兴趣区域。
2025-05-11 08:00:00
327
原创 GEE教程——使用 Google Earth Engine 成功地分析了特定区域的土壤容重,并可视化了不同深度的土壤数据
/ 你可以使用城市边界,并仅针对你的城市运行此代码在这段代码中,我们使用一个点的坐标来确定国家边界,并将其添加到地图上。print('统计信息 for ' + name, stat);});通过以上步骤,我们使用 Google Earth Engine 成功地分析了特定区域的土壤容重,并可视化了不同深度的土壤数据。最终,我们还创建了一个图例,以帮助用户更好地理解可视化结果。
2025-05-10 13:16:32
31
1
原创 CARVE:阿拉斯加 CARVE 飞机飞行视频,2012-2015 年
CARVE(北极水库碳脆弱性实验)是NASA在2012年至2015年间进行的一项关键研究,旨在通过飞机观测和地面测量,深入理解阿拉斯加北极地区陆地生态系统的碳循环及其与气候变化的相互作用。该实验通过高频率的季节性飞行活动,收集了从局部到区域尺度的温室气体数据,并利用先进的遥感技术和模型,量化了北极地区的碳通量。CARVE不仅填补了地球科学领域的重要知识空白,还支持了NASA在碳循环、生态系统、大气成分及气候变化等核心研究领域的目标。此外,CARVE的数据增强了现有NASA及非NASA传感器的科学价值,为全球
2025-05-10 13:10:42
467
原创 GEE案例:基于sentinel-2影像的Sigmoid函数和线性回归模型对红边光谱区域的反射率进行了模拟和分析(区分地物)
Sigmoid函数的形式为:(f_{max}) 是最大反射率。(k) 是反射率变化的速率。(x_0) 是变化率最大时的中心波长(拐点)。为了使用线性回归,我们将Sigmoid函数进行转换,得到:其中 (y = f(x)),这使得我们可以利用线性代数中的方法来拟合参数模型。接下来,我们定义需要分析的波段和相应的中心波长。需要注意的是,B8波段被排除,因为其带宽较宽且通常低于B7波段。// 波段中心波长(单位:微米)
2025-05-10 08:00:00
31
原创 GEE教程:使用Google Earth Engine提取了特定区域的风速数据,并将结果导出为CSV文件
首先,我们需要定义一个感兴趣的地理位置。// 边界城市在这段代码中,我们使用定义了一个点,并通过方法从城市边界数据集中筛选出与该点相交的城市边界。接下来,我们需要定义我们感兴趣的时间范围。通过以上步骤,我们成功地使用Google Earth Engine提取了特定区域的风速数据,并将结果导出为CSV文件。这一过程展示了GEE在气候数据分析中的强大能力。希望这篇博客对您在使用GEE时有所帮助!如果您有任何问题或建议,欢迎在评论区留言。
2025-05-09 15:35:59
43
1
原创 CARVE:每日飞行报告,2012-2015
CARVE: Daily Flight Reports, 2012-2015 数据集详细记录了北极碳库脆弱性实验(CARVE)在阿拉斯加和加拿大北极地区进行的空中飞行活动。该数据集包含134个PDF文件,每个文件约30张幻灯片,提供了飞行路径、高度、风向、天气条件、红外和可见光图像,以及大气气体浓度的初步分析。飞行活动在2012年至2015年的3月至11月期间进行,旨在研究大气气体含量的季节和年际变化,对理解北极碳循环及永久冻土融化的潜在威胁至关重要。数据集的空间覆盖范围为阿拉斯加和加拿大北极地区,时间跨度
2025-05-09 15:32:34
431
原创 GEE图表分析:使用Google Earth Engine分析指定区域的2024年的NDVI和LST
首先,我们定义研究区域(AOI),这里以墨西哥城为例。将AOI添加到地图上,并将地图中心定位到该区域。通过上述步骤,我们成功地使用Google Earth Engine分析了2024年的NDVI和LST。我们定义了研究区域。
2025-05-09 08:00:00
238
原创 GEE下载问题:同时设置不同文件名称,但是下载下来不错乱(不按照设定的名称下载)
我正在尝试使用 Google Earth Engine 导出 Sentinel-2 植被指数和纹理特征,这些特征是在点上进行采样的。由于我有很多点和特征,所以我不是一次性导出所有点的所有特征,而是在循环中逐个导出每个点的特征。问题:尽管我在 Export.table.toDrive 中设置了 folder='S2_textures',但地球引擎每次都会在我的 Google Drive 中创建一个新的名为 S2_textures 的文件夹。
2025-05-09 05:00:00
562
原创 GEE案例:基于1984-2022年结合NDVI数据和时间序列分析,识别和清理煤矿开采区域并将结果可视化并导出
这段代码利用遥感技术,结合NDVI数据和时间序列分析,识别和清理煤矿开采区域,确保数据的准确性和可靠性,最终将结果可视化并导出。该方法适用于环境监测和资源管理等领域。
2025-05-08 15:00:00
54
原创 GEE训练教程——基于指定区域的全系Landsat影像的检索和下载
这段代码展示了如何使用 Google Earth Engine 处理 Landsat 数据以计算 NDVI,并对不同时间段的数据进行过滤和合并。通过这些步骤,我们可以有效地分析特定区域的植被变化情况。希望这篇博客对你理解 Landsat 数据处理有帮助!
2025-05-08 14:52:23
37
原创 CARVE:AMSR-E 和 SSM/I 观测到的 2003-2014 年阿拉斯加北方和北极地区每日解冻状态
该数据集提供阿拉斯加和北极北方陆地表面状态的每日 10 公里分辨率地图,包括冻结、融化和解冻状态。这些数据来自 2003 年至 2014 年先进微波扫描辐射计(AMSR-E)和特殊传感器微波成像仪(SSM/I)的被动微波辐射计观测数据。数据产品与北极水库碳脆弱性实验(CARVE)期间进行的科学数据收集工作重叠。数据产品是使用时间序列奇异性分类器生成的,该分类器可检测时间序列数据中与土壤或积雪冻融期间发生的地表水文剧烈变化相关的不连续变化或边缘。
2025-05-08 14:46:02
686
原创 GEE土地分类:使用Landsat影像在加纳绘制水体地图(水体提取),随机森林算法进行分类并最终导出结果
这段代码通过多个步骤从Landsat影像中提取和分类水体信息,利用随机森林算法进行分类,并最终导出结果。整个过程包括数据准备、影像处理、分类、细化和导出,适用于环境监测和资源管理等领域。
2025-05-08 11:00:00
26
原创 GEE数据集:4米分辨率开放式建筑物 2.5D 时空数据集包含跨度为 8 年(2016-2023 年)
本脚本用于从Google的Open Buildings 2.5D Temporal数据集中下载高分辨率(0.5米)的建筑数据。该数据集提供了建筑数量、高度和存在情况等信息,广泛应用于城市规划、灾害响应和基础设施管理等领域。// 定义感兴趣的年份// 定义感兴趣区域(以葡萄牙里斯本附近区域为例)// 定义AOI(在运行脚本前,请在GEE编辑器中定义此变量)// 定义感兴趣的波段名称。
2025-05-08 08:00:00
538
原创 GEE 案例:利用SNIC分割优化算法实现面向对象的分类
通过以上优化措施,您可以提升影像分割的实际效果,使其更贴合实际地物边界,从而提高后续分类的准确性。较小的值(如 10–20)适用于地物较小的区域,较大的值(如 30–50)适用于地物较大的区域。较高的值(如 5–10)会生成形状更规则的超像素,较低的值(如 1–3)更依赖光谱特征。这里除了我们对算法参数进行调整外,我们还需要考虑我们样本点的选择,因为这是进行面向对象分割的一个很重要的点。SNIC 分割结果可能会随着地图缩放级别的变化而变化,为了获得一致的分割结果,建议在分割后使用。:影响分割的空间范围。
2025-05-07 20:00:00
313
原创 GEE教程——使用 NASA 的 SMAP 数据集计算特定区域的水平亮温(Brightness Temperature),并在地图上进行可视化
GEE教程——使用 NASA 的 SMAP 数据集计算特定区域的水平亮温(Brightness Temperature),并在地图上进行可视化在本博客中,我们将使用 Google Earth Engine (GEE) 来计算特定区域的水平亮温(Brightness Temperature)。我们将使用 NASA 的 SMAP 数据集,并在地图上进行可视化。以下是详细步骤和代码解释。首先,我们需要定义一个点的地理位置,这里以瑞士的某个地点为例:2. 获取城市边界接下来,我们可以使用城市边界数据来限制我们的
2025-05-07 10:39:57
35
原创 WRF-STILT模型输入的气象站数据
该数据集为位于北极碳库脆弱性实验 (CARVE) 飞行路径(2012 - 2015 年)沿线位置的粒子接收器以及阿拉斯加和加拿大北极地区的各个气象站提供天气研究与预报 (WRF) 随机时间倒置拉格朗日传输 (STILT) 模型输入。每个产品包含多个 NetCDF 文件,打包为一个 TAR/GZIP 文件。这些数据对应于同样由 CARVE 科学团队生成的 WRF-STILT 模型足迹数据。该数据集包含 72 个 TAR/GZIP 文件,其中包含 NetCDF 格式的 WRF-STILT 粒子文件。
2025-05-07 10:32:19
946
原创 GEE教程(更新):基于Landsat C08 T1 L2(SR)数据和进行黄河流域的归一化建筑指数NDBI(不透水层)分析
更新公告:因为Landsat C01数据已经下架,所以这里更新了一下新的博客,重写了相关代码原始的博客链接如下:Google Earth Engine(GEE)——利用归一化建筑指数NDBI(不透水层)提取建筑物加载矢量数据:代码首先加载了一个存储在 Google Earth Engine 资产中的矢量数据(),该数据用于定义研究区域。使用 来加载并指定区域。影像质量控制函数 :计算归一化差异建筑指数 :可视化参数 :影像集的加载和处理:选择最佳影像:可视化影像:导出影像:影像结果
2025-05-07 10:30:00
36
原创 GEE图表分析:利用Google Earth Engine(GEE)平台,分析地区的地表温度(LST)数据,并计算城市热岛(SUHI)效应
这段代码利用GEE平台,结合MODIS地表温度和土地覆盖数据,对墨西哥城地区的地表温度进行了详细的分析,并计算了城市热岛效应。通过年度平均温度的时间序列分析和城市与乡村区域的对比,可以更好地理解城市化对地表温度的影响。
2025-05-07 08:00:00
583
原创 GEE教程:利用 Sentinel-2 卫星影像数据计算指定区域的NDVI并可视化
接下来,我们定义研究区域(AOI),并将地图中心设置为该区域。这里我们使用一个存储在项目中的矢量文件。// 将地图中心设置为研究区域,缩放级别为5我们定义 NDVI 的可视化参数,包括最小值、最大值和调色板,以便在地图上清晰显示 NDVI 的分布。min: 0,max: 1,palette: ['red', 'yellow', 'green'], // 调色板:红色表示低 NDVI,绿色表示高 NDVI。
2025-05-06 13:10:08
30
原创 北极碳库脆弱性实验飞行路径粒子接收器数据集
该数据集提供天气研究与预报 (WRF) 随机时间反演拉格朗日输送 (STILT) 足迹数据产品,适用于位于北极碳库脆弱性实验 (CARVE) 飞行路径(2012 年至 2015 年)沿线位置的粒子接收器以及阿拉斯加和加拿大北极地区的各个气象站。每个产品包含多个 NetCDF 足迹文件,打包为 TAR/GZIP 文件。这些飞机和站点位置在 WRF-STILT 模型中被视为接收器,以模拟陆地表面对观测到的大气成分的影响。该数据集中包含的测量数据对于理解北极碳循环的变化以及北极多年冻土融化带来的潜在威胁至关重要。
2025-05-06 13:06:21
666
Cloud_free_imagery_of_Knox_County,_Tennessee_with_Landsat_9,_Sentinel_2_and_NAIP.ipynb
2025-05-15
【遥感与地理信息系统】北极湿地分类及多源遥感数据处理:基于Google Earth Engine的大规模数据集成与机器学习应用
2025-05-15
【遥感影像处理】GEE 代码基于sentinel-2的北极水深建模
2025-05-15
【遥感与地理信息系统】基于Google Earth Engine的冰水转换检测:春季解冻序列识别算法实现
2025-05-15
【遥感影像处理】基于Google Earth Engine的光学影像预处理与指数计算:Landsat和Sentinel数据准备及应用
2025-05-15
【遥感影像处理】基于Google Earth Engine的影像预处理函数集:Landsat与Sentinel数据准备及分析文档中的关键技术和
2025-05-15
【地球引擎脚本】基于时间序列的冰川存在状态逻辑回归分析:异常观测过滤与模型拟合
2025-05-15
【遥感影像处理】基于Earth Engine的多源卫星TOA影像冰川分类算法:Landsat 7/8与Sentinel 2冰水云判别系统设计
2025-05-15
【遥感与地理信息系统】基于Google Earth Engine的春季冰融期检测:多源卫星影像融合与时间序列分析系统构建
2025-05-15
【地理信息系统】基于Google Earth Engine的区域降水分析:埃塞俄比亚希姆布里特地区降水数据处理与可视化
2025-05-15
地球观测基于eo-learn和Sentinel数据的遥感图像处理与水位监测工作流设计:地球观测数据自动分析系统构建
2025-05-15
地球观测基于eo-learn和Sentinel数据的遥感图像处理与水位监测工作流设计:地球观测数据自动分析系统构建
2025-05-15
【遥感与地理信息系统】基于TensorFlow和Google Earth Engine的土地分类深度学习模型构建与应用:从数据预处理到模型评估及图像分类预测全流程实现
2025-05-15
【遥感影像处理】基于Google Earth Engine的多光谱影像预处理与分类样本导出:伊斯兰堡地区土地覆盖分类数据准备文档的主要内容
2025-05-15
【地理信息系统】基于Python的NetCDF转GeoTIFF与Google Earth Engine数据上传处理:环境监测与时空数据分析自动化脚本开发
2025-05-15
基于深度学习的河流变化检测项目代码
2025-05-15
【遥感与地理信息系统】基于卫星影像的海岸侵蚀检测:利用NDWI分析2016至2024年拉各斯海岸线变化Google Earth Engine平台
2025-05-15
【地理信息系统】基于Google Earth Engine的海岸线变化检测:利用NDWI进行水体提取与可视化分析
2025-05-15
【JavaScript编程】常用字典操作函数实现:复制、更新与删除键及列表成员检查功能开发
2025-05-15
【地理信息系统】基于Google Earth Engine的SCD/RR可视化参数配置:颜色方案与图例生成脚本设计
2025-05-15
【地理信息系统】基于Google Earth Engine的可视化脚本:未来SCD应用程序的色彩与图例配置设计
2025-05-15
【地理信息系统】基于GEE的PJ生态位应用可视化参数设置与图例生成:适用于生态变化分析的色彩配置和可视化系统构建
2025-05-15
【地理信息系统】基于GEE的可视化脚本:颜色调色板与图例构建用于遥感数据分析
2025-05-15
【地理信息系统】基于GEE的可视化脚本:地图图层与图例样式设计及操作函数集
2025-05-15
【地理信息系统】基于Google Earth Engine的SEI和RR图层叠加探索工具:环境变量与气候情景可视化系统设计了文档的主要内容
2025-05-15
【地理信息系统】基于Google Earth Engine的草地生态管理交互式图层对比应用:历史与未来场景可视化系统设计
2025-05-15
【地理信息系统】基于Google Earth Engine的非洲地区未燃烧像元分析与采样点生成:多源遥感数据融合及火烧区域统计
2025-05-15
【地理信息系统】Google Earth Engine代码实现:全球多区域环境因子提取与火灾掩膜生成
2025-05-15
【地理信息系统】基于GEE的MODIS火灾区域分析与多源遥感数据融合:非洲大陆六边形网格烧毁面积统计及环境变量采样
2025-05-15
【地理信息系统】基于GeoPandas的城市变化类别空间分布分析:内罗毕市三个城区区域对比研究
2025-05-15
【地理信息系统】基于Python的地理数据分析:城市变迁类别下前五贫民窟面积统计与可视化系统设计
2025-05-15
【地理信息系统】基于建筑物统计数据的城市变化分类:2016至2023年城市建筑数量和高度变化分析与分类系统设计
2025-05-15
【地理信息系统】基于Google 2.5D数据的建筑物统计提取:计算建筑数量与平均高度的栅格分析系统设计
2025-05-15
【遥感影像处理】基于Google Earth Engine的Landsat 8影像NDVI变化检测:植被健康状况分析与可视化
2025-05-15
Watershed_with_DEM,_split_panel_map_for_visualizing_land_cover_change_(2001_2019).ipynb
2025-05-15
The DEM of Nepal and cloud-free of Sentinel-2 imagery of the year 2021 for Nepal.ipynb
2025-05-15
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人