Problem Description
某省调查乡村交通状况,得到的统计表中列出了任意两村庄间的距离。省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可),并要求铺设的公路总长度为最小。请计算最小的公路总长度。
Input
测试输入包含若干测试用例。每个测试用例的第1行给出村庄数目N ( < 100 );随后的N(N-1)/2行对应村庄间的距离,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间的距离。为简单起见,村庄从1到N编号。
当N为0时,输入结束,该用例不被处理。
当N为0时,输入结束,该用例不被处理。
Output
对每个测试用例,在1行里输出最小的公路总长度。
Sample Input
3 1 2 1 1 3 2 2 3 4 4 1 2 1 1 3 4 1 4 1 2 3 3 2 4 2 3 4 5 0
Sample Output
3 5
#include <cstdio>
#include <cstring>
#define N 110
#define INF 0x7fffffff
int map[N][N], dis[N];
bool vis[N];
int n;
int prim()
{
memset(vis, false, sizeof(vis));
vis[1] = true;
for (int i = 1; i <= n; i++) dis[i] = map[1][i];
int ans = 0;
for (int i = 2; i <= n; i++)
{
int minx = INF, mini;
for (int j = 1; j <= n; j++)
if (!vis[j] && dis[j] < minx) minx = dis[mini = j];
ans += dis[mini]; vis[mini] = true;
for (int j = 1; j <= n; j++)
if (!vis[j] && map[mini][j] < dis[j]) dis[j] = map[mini][j];
}
return ans;
}
int main()
{
while (scanf("%d", &n), n)
{
for (int i = 1; i <= n; i++) map[i][i] = 0;
int sum = n * (n - 1) / 2;
for (int i = 1; i <= sum; i++)
{
int a, b, w;
scanf("%d%d%d", &a, &b, &w);
map[a][b] = map[b][a] = w;
}
printf("%d\n", prim());
}
return 0;
}