欧拉回路 欧拉路径题目

题目链接                                                              

2092: 欧拉回路

时间限制: 1 Sec  内存限制: 32 MB
提交: 6  解决: 5
[提交][状态][讨论版][
命题人:外部导入]

题目描述

欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路。现给定一个图,问是否存在欧拉回路?

输入

测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是节点数N ( 1 < N <= 1000 )和边数M;随后的M行对应M条边,每行给出一对正整数,分别是该条边直接连通的两个节点的编号(节点从1到N编号)。当N为0时输入结束。

输出

每个测试用例的输出占一行,若欧拉回路存在则输出1,否则输出0。

样例输入

3 3

2 3

1 2

1 3

3 2

1 2

2 3

0

样例输出

1

0

提示

图论的一个知识点:存在欧拉回路当且仅当图连通且不存在奇点(度数为奇数的顶点)。判断连通性我们可以使用深度优先搜索来完成。

思路:欧拉回路概念

显然需要先判断图的连通性,再...

代码:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<string.h>
#define in(x) scanf("%d",&x)
#define out(x) printf("%d\n",x)
using namespace std;
const int maxn=1e3+5;
int n,m;
int k[maxn];
int main()
{
    int a,b,flag;
    while(in(n),n){
    	flag=0;
        in(m);
        memset(k,0,sizeof(k));
        for(int i=0;i<m;i++){
            in(a),in(b);
            k[a]++,k[b]++;
        }
        for(int i=1;i<=n;i++){
            if(k[i]&1||k[i]==0){
                flag=1;
                break;
            }
        }
        if(flag) out(0);
        else out(1);
    }
} 

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值