POJ 3040 Allowance 题解

tag : 贪心

WA N次,对拍N次,修改N次后,终于完成这道题。

理解题意后,很容易想到用贪心,从币值大的硬币开始取,然后递归求解。

但这个递归,写起来不怎么容易。可能是因为我没有事先在纸上把递归的思路,要讨论的情况写清楚,而是边写边想会遇到什么情况,以致于讨论起来非常乱,代码难写的同时,漏讨论了一种情况,外加细节写错导致多次WA。

下面先总结下自己的思路。


题目大意

有N种硬币(N <= 20),给出每种硬币的币值和数量,所有硬币的币值的最大公约数等于最小币值,求最多能凑成多少份>=C的钱?

基本思路

基本的贪心思路是这样来的:比如凑钱的目标是,一份钱C= 6,而我们拥有的最大币值硬币为5块钱,数量有10个,那么我们先拿5去凑,还差1;接着我们就看看剩余的币种中能凑出多少份1,如果能凑出10份(含以上),那么10枚5块钱硬币就能和这10份1块钱一起凑成10份6块钱;如果不能凑出10份1块钱,比如说只能凑出8份,那么就凑成8份6块钱,这时还剩两枚5块钱硬币,就拿这两枚硬币一起凑成一份(虽然拿10块去凑6块有点浪费,但如果不这么凑,这余下的两枚5块钱就没用了)。

就这样,我们算出来了在使用5块钱来凑的情况下,最多能凑出来多少份。接着用同样的思路讨论币值小的硬币即可。

递归函数设计

注意TIPs:
- a[i]表示第i种硬币, 其中a[i].v表示第i种硬币的币值,a[i].c表示第i种硬币的(剩余)数量
- 除法在不能整除的情况下均向下取整,除非加上ceil()表示向上取整.

递归函数 apply(i, mo, maxc)表示, 从第i种硬币开始(已降序排序)取钱,能取出多少份不少于mo的钱,且份数不超过maxc。也即,这个函数的返回值不超过maxc。

比如,上面例子的初始情况对应的函数调用是apply(0, 6, INF),第0种硬币的币值为5, 即a[0].v = 5, a[0].c = 10,接着递归调用apply(1, 1, 10)看看能凑成多少份1块钱。

设计出函数后,下面来讨论递归中如何转移。


1. 如果a[i].v <= mo(对应代码中的para > 0)

那么我们就先拿a[i]来凑,直到差不多凑满,再由剩下的币种来凑够mo % a[i].v。需要多少份(mo % a[i].v)的钱呢?仔细算一下。

先考虑para = mo/a[i].v, 即凑一份mo需要多少枚硬币a[i],这里把para枚硬币描述为一堆吧,即这一堆币值为a[i]的硬币再加上一点别的硬币就能凑成一份mo的钱。

第i种硬币能分成多少堆呢,应该是cnt = a[i].c / para堆;即这cnt堆钱,每堆的钱数是a[i].v*para, 还需要再加上(mo - a[i].v*para), 即(mo % a[i].v) 这么多的钱就能凑出一份mo.

那么我们还需要min(cnt, maxc)份价值为(mo % a[i].v) 的钱,即递归调用apply(i+1,mo-a[i].v,min(cnt,maxc));

递归调用的返回值将告诉我们,这min(cnt, maxc)堆钱能不能全部凑满,如果不能,即会剩余一些a[i]的硬币。另外,本身我们分堆的时候,就会留下a[i].c % para枚硬币,这些剩余的硬币需要继续讨论。

如果剩余硬币数量a[i].c * a[i].v >= mo,
那么就直接拿这些硬币凑钱,即拿同一币值(a[i].v)数量为a[i].c的硬币去凑mo, 显然能凑a[i].c/(ceil(mo/a[i].v))份。

如果依然剩余硬币,a[i].c * a[i].v < mo,
那么拿这些硬币凑成一堆a[i].c * a[i].v的钱,还差mo - a[i].c * a[i].v 才能凑成一份,即递归调用apply(i+1, mo - a[i].c * a[i].v, 1)。

讨论到这里,如果第i种硬币还有剩余,这些硬币可以直接忽略掉了,因为,如果还有剩余硬币剩余,说明加上后面所有的硬币也凑不够mo,也就是说,这时候整个程序都能结束了。如果第i种硬币没有剩余,那么后面硬币的钱才有可能有足够多的钱来凑,我们应该继续算后面的硬币能凑成多少份mo,即递归调用apply(i+1,mo,maxc)。


2. 如果a[i].v > mo(对应代码中的para == 0)

这时候一块硬币a[i]就能凑成mo的钱数,那么也就是能凑成a[i].v份。 但是,考虑到,a[i].v比mo要大,那么直接拿a[i]来凑,会造成浪费。其实,我们应该先拿后面的硬币来凑(递归调用apply(i+1,mo,maxc)),如果还凑不满maxc份mo,才拿a[i] 来凑。

source code

#include <cstdio>
#include <algorithm>
using namespace std;
#define UPDATE res += _update;\
               if (res >= maxc) \
               {                \
                return res;\
               }
// UPDATE 宏来保证凑的钱的份数不超过maxc

typedef long long ll;
int n;
ll c;
const int maxn = 25;
const ll INF = 100000000000003LL;
struct money
{
    ll v,c;
}a[maxn];
bool cmp(const money &a, const money &b)
{
    return a.v > b.v;
}
ll ans = 0;
ll apply(int i, ll mo, ll maxc) // return how many moneys(mo) can produce
{
    ll _update = 0, res = 0;
    if (mo <= 0) return maxc;//已经凑够钱,不需要再加硬币
    if (i >= n) return 0; //已经没有新的硬币可以用了
    // 两个条件的判断顺序不能弄混

    ll para = mo / a[i].v; // amount of a[i] per heep
    if (para > 0) // 也即 (mo >= a[i].v)
    {
        ll cnt = a[i].c / para;// cnt: how many heeps can a[i] be devided into 
        _update = apply(i + 1, mo%a[i].v, min(cnt, maxc - res));
        a[i].c -= _update * para;
        UPDATE

        if (a[i].c && mo < a[i].v * a[i].c)
        {
            ll _para = para + (mo%a[i].v?1:0);
            _update = min(a[i].c / _para, maxc - res);
            a[i].c -= _update * _para;
            UPDATE
        }

        if (a[i].c && mo >= a[i].v * a[i].c)
        {
            _update = apply(i + 1, mo - a[i].v * a[i].c, 1);
            a[i].c -= _update  * a[i].c;
            UPDATE
        }
        if (a[i].c) return res;
        _update = apply(i + 1, mo, maxc - res);
        UPDATE
    }

    else// para == 0
    {
        _update = apply(i + 1, mo, maxc);
        UPDATE

        _update = min(a[i].c, maxc - res);
        a[i].c -= _update;
        UPDATE
    }
    return res;
}

int main()
{
    scanf("%d%lld",&n,&c);
    for (int i = 0; i < n; i++)
        scanf("%lld%lld",&a[i].v,&a[i].c);
    sort(a,a+n,cmp);
    printf("%lld\n",apply(0,c,INF));
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
POJ3635是一道经典的数学题,需要使用一些数学知识和算法进行解决。 题目描述: 给定四个正整数 a、b、p 和 k,求 a^b^p mod k 的值。 解题思路: 首先,我们可以将指数 b^p 写成二进制形式:b^p = c0 * 2^0 + c1 * 2^1 + c2 * 2^2 + ... + ck * 2^k,其中 ci 为二进制数的第 i 位。 然后,我们可以通过快速幂算法来计算 a^(2^i) mod k 的值。具体来说,我们可以用一个变量 x 来存储 a^(2^i) mod k 的值,然后每次将 i 加 1,如果 ci 为 1,则将 x 乘上 a^(2^i) mod k,最后得到 a^b^p mod k 的值。 代码实现: 以下是 Java 的代码实现: import java.util.*; import java.math.*; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); BigInteger a = sc.nextBigInteger(); BigInteger b = sc.nextBigInteger(); BigInteger p = sc.nextBigInteger(); BigInteger k = sc.nextBigInteger(); BigInteger ans = BigInteger.ONE; for (int i = 0; i < p.bitLength(); i++) { if (b.testBit(i)) { ans = ans.multiply(a.modPow(BigInteger.ONE.shiftLeft(i), k)).mod(k); } } System.out.println(ans); } } 其中,bitLength() 函数用于获取二进制数的位数,testBit() 函数用于判断二进制数的第 i 位是否为 1,modPow() 函数用于计算 a^(2^i) mod k 的值,multiply() 函数用于计算两个 BigInteger 对象的乘积,mod() 函数用于计算模数。 时间复杂度: 快速幂算法的时间复杂度为 O(log b^p),其中 b^p 为指数。由于 b^p 的位数不超过 32,因此时间复杂度为 O(log 32) = O(1)。 总结: POJ3635 是一道经典的数学题,需要使用快速幂算法来求解。在实现时,需要注意 BigInteger 类的使用方法,以及快速幂算法的细节。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值