极限是数学分析中的一个核心概念,用于描述函数或序列在某点或无穷远处的行为。不同的极限问题适合不同的方法求解。
1. 直接代入法
适用情况:
对于简单的连续函数,若函数在某点连续且可计算,直接代入该点即可求得极限。
例子:
lim
x
→
2
(
x
2
−
3
x
+
5
)
\lim_{x \to 2} (x^2 - 3x + 5)
x→2lim(x2−3x+5)
直接代入
x
=
2
x = 2
x=2:
2
2
−
3
×
2
+
5
=
4
−
6
+
5
=
3
2^2 - 3 \times 2 + 5 = 4 - 6 + 5 = 3
22−3×2+5=4−6+5=3
注意:
该方法只适用于函数在该点处连续的情况。若直接代入得到不确定形式(如
0
/
0
0/0
0/0),则需用其他方法。
2. 因式分解法
适用情况:
当函数的形式为分式且代入自变量后出现
0
/
0
0/0
0/0 的不确定形式时,因式分解可将分子和分母化简,消除零因子,重新求解极限。
例子:
lim
x
→
2
x
2
−
4
x
−
2
\lim_{x \to 2} \frac{x^2 - 4}{x - 2}
x→2limx−2x2−4
因式分解分子:
(
x
−
2
)
(
x
+
2
)
x
−
2
\frac{(x - 2)(x + 2)}{x - 2}
x−2(x−2)(x+2)
消去
x
−
2
x - 2
x−2:
lim
x
→
2
(
x
+
2
)
=
4
\lim_{x \to 2} (x + 2) = 4
x→2lim(x+2)=4
注意:
因式分解法通常用于多项式分式,化简后再进行计算。
3. 有理化法
适用情况:
当极限中出现根号且直接代入产生
0
/
0
0/0
0/0 不确定形式时,可以通过有理化来简化问题。具体操作是对根号项乘以共轭项(即
a
+
b
a + b
a+b 的共轭为
a
−
b
a - b
a−b)。
例子:
lim
x
→
0
x
+
1
−
1
x
\lim_{x \to 0} \frac{\sqrt{x + 1} - 1}{x}
x→0limxx+1−1
乘以共轭项:
x
+
1
−
1
x
⋅
x
+
1
+
1
x
+
1
+
1
=
x
x
(
x
+
1
+
1
)
=
1
x
+
1
+
1
\frac{\sqrt{x + 1} - 1}{x} \cdot \frac{\sqrt{x + 1} + 1}{\sqrt{x + 1} + 1} = \frac{x}{x(\sqrt{x + 1} + 1)} = \frac{1}{\sqrt{x + 1} + 1}
xx+1−1⋅x+1+1x+1+1=x(x+1+1)x=x+1+11
代入
x
=
0
x = 0
x=0,得:
1
2
\frac{1}{2}
21
注意:
有理化法适用于涉及根号的情况,尤其当代入自变量后出现
0
/
0
0/0
0/0 形式时。
4. 洛必达法则
适用情况:
洛必达法则适用于
0
0
\frac{0}{0}
00 或
∞
∞
\frac{\infty}{\infty}
∞∞ 的不确定形式。在分子和分母分别可导的情况下,可以通过对分子和分母求导来简化极限问题。
公式:
lim
x
→
c
f
(
x
)
g
(
x
)
=
lim
x
→
c
f
′
(
x
)
g
′
(
x
)
,前提是
lim
x
→
c
f
′
(
x
)
g
′
(
x
)
存在
\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}, \text{前提是} \lim_{x \to c} \frac{f'(x)}{g'(x)} \text{存在}
x→climg(x)f(x)=x→climg′(x)f′(x),前提是x→climg′(x)f′(x)存在
例子:
lim
x
→
0
sin
x
x
\lim_{x \to 0} \frac{\sin x}{x}
x→0limxsinx
直接代入会得到
0
0
\frac{0}{0}
00,使用洛必达法则对分子和分母求导:
lim
x
→
0
cos
x
1
=
1
\lim_{x \to 0} \frac{\cos x}{1} = 1
x→0lim1cosx=1
注意:
洛必达法则只适用于不确定形式,且在某些情况下需要多次使用。确保每次导数的极限存在。
5. 极限性质
适用情况:
利用极限的基本性质,可以将复杂问题拆分为多个简单的极限,再分别求解。
基本性质:
- 和的极限:
lim x → c [ f ( x ) + g ( x ) ] = lim x → c f ( x ) + lim x → c g ( x ) \lim_{x \to c} [f(x) + g(x)] = \lim_{x \to c} f(x) + \lim_{x \to c} g(x) x→clim[f(x)+g(x)]=x→climf(x)+x→climg(x) - 积的极限:
lim x → c [ f ( x ) ⋅ g ( x ) ] = lim x → c f ( x ) ⋅ lim x → c g ( x ) \lim_{x \to c} [f(x) \cdot g(x)] = \lim_{x \to c} f(x) \cdot \lim_{x \to c} g(x) x→clim[f(x)⋅g(x)]=x→climf(x)⋅x→climg(x) - 商的极限:
lim x → c f ( x ) g ( x ) = lim x → c f ( x ) lim x → c g ( x ) , 前提是 lim x → c g ( x ) ≠ 0 \lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}, \text{前提是} \lim_{x \to c} g(x) \neq 0 x→climg(x)f(x)=limx→cg(x)limx→cf(x),前提是x→climg(x)=0
例子:
lim
x
→
1
(
x
2
+
3
x
)
=
lim
x
→
1
x
2
+
lim
x
→
1
3
x
=
1
2
+
3
×
1
=
4
\lim_{x \to 1} (x^2 + 3x) = \lim_{x \to 1} x^2 + \lim_{x \to 1} 3x = 1^2 + 3 \times 1 = 4
x→1lim(x2+3x)=x→1limx2+x→1lim3x=12+3×1=4
注意:
极限性质适用于拆分复杂表达式,并且要求参与运算的每个部分极限都存在。
6. 逐项分析法
适用情况:
处理含有多个项或嵌套的复杂极限时,可以对每个项单独分析其极限,逐步简化问题。
例子:
lim
x
→
0
(
x
2
x
+
1
+
sin
x
)
\lim_{x \to 0} \left( \frac{x^2}{x + 1} + \sin x \right)
x→0lim(x+1x2+sinx)
可以分别求解两个部分的极限:
lim
x
→
0
x
2
x
+
1
=
0
2
0
+
1
=
0
\lim_{x \to 0} \frac{x^2}{x + 1} = \frac{0^2}{0 + 1} = 0
x→0limx+1x2=0+102=0
lim
x
→
0
sin
x
=
0
\lim_{x \to 0} \sin x = 0
x→0limsinx=0
所以,总的极限为
0
+
0
=
0
0 + 0 = 0
0+0=0。
注意:
适用于极限问题可以分解为多个相对独立的部分。
7. 主导项分析法
适用情况:
对于函数中含有不同增长速率的项,主导项分析法通过找出主导项(即增长最快或最慢的项)来简化极限的计算。
例子:
lim
x
→
∞
5
x
2
+
3
x
+
1
2
x
2
−
x
\lim_{x \to \infty} \frac{5x^2 + 3x + 1}{2x^2 - x}
x→∞lim2x2−x5x2+3x+1
在
x
→
∞
x \to \infty
x→∞ 时,最高次项
x
2
x^2
x2 主导整个表达式。因此我们只考虑主导项:
lim
x
→
∞
5
x
2
2
x
2
=
5
2
\lim_{x \to \infty} \frac{5x^2}{2x^2} = \frac{5}{2}
x→∞lim2x25x2=25
注意:
主导项分析法适用于分式中不同次方的多项式,或指数、对数函数的组合。
8. 夹逼定理
适用情况:
当一个函数被两个已知极限的函数夹住时,可以利用夹逼定理求解其极限。如果
a
n
≤
b
n
≤
c
n
a_n \leq b_n \leq c_n
an≤bn≤cn 且
lim
n
→
∞
a
n
=
lim
n
→
∞
c
n
=
L
\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L
limn→∞an=limn→∞cn=L,则
lim
n
→
∞
b
n
=
L
\lim_{n \to \infty} b_n = L
limn→∞bn=L。
例子:
lim
x
→
0
x
2
sin
1
x
\lim_{x \to 0} x^2 \sin \frac{1}{x}
x→0limx2sinx1
我们知道:
−
1
≤
sin
1
x
≤
1
-1 \leq \sin \frac{1}{x} \leq 1
−1≤sinx1≤1
所以:
−
x
2
≤
x
2
sin
1
x
≤
x
2
-x^2 \leq x^2 \sin \frac{1}{x} \leq x^2
−x2≤x2sinx1≤x2
当
x
→
0
x \to 0
x→0,两边都趋于 0,根据夹逼定理,得:
lim
x
→
0
x
2
sin
1
x
=
0
\lim_{x \to 0} x^2 \sin \frac{1}{x} = 0
x→0limx2sinx1=0
注意:
夹逼定理需要两个已知函数夹住待求极限的函数,且它们的极限相同。
9. 泰勒展开法
适用情况:
对于可微函数,泰勒展开法通过将函数展开为多项式形式,借助展开的低阶项来近似求极限。
例子:
lim
x
→
0
sin
x
−
x
x
3
\lim_{x \to 0} \frac{\sin x - x}{x^3}
x→0limx3sinx−x
使用泰勒展开:
sin
x
=
x
−
x
3
6
+
o
(
x
3
)
\sin x = x - \frac{x^3}{6} + o(x^3)
sinx=x−6x3+o(x3)
代入得到:
sin
x
−
x
x
3
=
−
x
3
6
+
o
(
x
3
)
x
3
=
−
1
6
+
o
(
1
)
\frac{\sin x - x}{x^3} = \frac{- \frac{x^3}{6} + o(x^3)}{x^3} = -\frac{1}{6} + o(1)
x3sinx−x=x3−6x3+o(x3)=−61+o(1)
所以极限为:
−
1
6
-\frac{1}{6}
−61
注意:
泰勒展开法尤其适用于处理函数在某点附近的复杂极限问题。
10. 变量替换法
适用情况:
有时通过引入新变量,可以将复杂问题转换为简单形式,从而简化极限的求解。
例子:
lim
x
→
0
sin
2
x
x
\lim_{x \to 0} \frac{\sin 2x}{x}
x→0limxsin2x
通过变量替换
u
=
2
x
u = 2x
u=2x,则当
x
→
0
x \to 0
x→0,
u
→
0
u \to 0
u→0:
lim
u
→
0
sin
u
u
⋅
2
=
2
\lim_{u \to 0} \frac{\sin u}{u} \cdot 2 = 2
u→0limusinu⋅2=2
注意:
变量替换法通常通过新的自变量来简化极限表达式。