NOIP2013货车运输
题目描述
A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路。每一条道路对车辆都有重量限制,简称限重。
现在有 q 辆货车在运输货物,司机们想知道每辆车在不超过车辆限重的情况下,最多能运多重的货物。
输入
第一行有两个用一个空格隔开的整数 n,m,表示 A 国有n 座城市和 m 条道路。
接下来 m 行每行 3 个整数 x、y、z,每两个整数之间用一个空格隔开,表示从 x 号城市到 y 号城市有一条限
重为 z 的道路。注意:x 不等于 y,两座城市之间可能有多条道路。
接下来一行有一个整数 q,表示有q 辆货车需要运货。
接下来 q 行,每行两个整数 x、y,之间用一个空格隔开,表示一辆货车需要从 x 城市运输货物到 y 城市,
注意:x 不等于 y。
对于 30%的数据,0 < n < 1,000,0 < m < 10,000,0 < q < 1,000;
对于 60%的数据,0 < n < 1,000,0 < m < 50,000,0 < q < 1,000;
对于 100%的数据,0 < n <10,000,0 < m < 50,000,0< q < 30,000,0 ≤ z ≤ 100,000。
输出
输出共有 q 行,每行一个整数,表示对于每一辆货车,它的最大载重是多少。
如果货车不能到达目的地,输出-1。
样例输入
4 3
1 2 4
2 3 3
3 1 1
3
1 3
1 4
1 3
样例输出
3
-1
3
很显然,我们想要尽可能使每条边的限重最大,所以跑个最小生成树。预处理一个k[i][j]记录从i点开始到2^j的爸爸上的最小限重。然后对于每次询问,我们在树上lca找到最近公共祖先,我们知道从最近公共祖先走的路径是最优的(很显然)。每次比较一下起点到最近公共祖先的最小限重和最近公共祖先到终点的最小限重,就是答案。
感悟:切记啊,它不止一个联通块,所以要用一个visit来看这个联通块来没来过。
#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstdio>
#include<cstring>
#define lim 200500
using namespace std;
struct hehe{int x,y,z;}edge[lim];
bool visit[lim];
int head[lim],next[lim],v[lim],w[lim],fa[lim],depth[lim];
int f[lim][25],k[lim][25];
int n,m,tot,root,q,cnt;
inline int read()
{
int ret=0;char ch=getchar();
while(ch<'0' ||ch>'9') ch=getchar();
while(ch>='0' && ch<='9') ret=ret*10+ch-'0',ch=getchar();
return ret;
}
void start()
{
for (int i=0;i<=n;i++)
{
visit[i]=true;
for (int j=0;j<=20;j++) k[i][j]=0x3f3f3f3f;
}
}
bool cmp(hehe a,hehe b){return a.z>b.z;}
int getfa(int x){return x == fa[x]?x:fa[x]=getfa(fa[x]);}
void add_edge(int x,int y,int z){v[++tot]=y;w[tot]=z;next[tot]=head[x];head[x]=tot;}
void kruskal()
{
tot=0;cnt=0;
for (int i=1;i<=n;i++) fa[i]=i;
sort(edge,edge+m,cmp);
for (int i=0;i<m;i++)
{
int a=getfa(edge[i].x),b=getfa(edge[i].y);
if (a != b)
{
fa[a]=edge[i].y;
add_edge(edge[i].y,edge[i].x,edge[i].z);
add_edge(edge[i].x,edge[i].y,edge[i].z);
cnt++;
if (cnt == n-1) break;
}
}
}
void dfs(int x)
{
visit[x]=false;
for (int i=head[x];i;i=next[i])
{
int y=v[i];
if (visit[y])
{
depth[y]=depth[x]+1;
f[y][0]=x;
k[y][0]=w[i];
for (int j=1;j<=20;j++)
f[y][j]=f[f[y][j-1]][j-1],k[y][j]=min(k[y][j-1],k[f[y][j-1]][j-1]);
dfs(y);
}
}
}
int lca(int x,int y)
{
if (depth[x]<depth[y]) swap(x,y);
int d=depth[x]-depth[y];
for (int i=0;i<=20;i++)
if ((1<<i)&d) x=f[x][i];
for (int i=20;i>=0;i--)
if (f[x][i] != f[y][i]) x=f[x][i],y=f[y][i];
return x == y?x:f[x][0];
}
int ask(int x,int y)
{
int ret=0x3f3f3f3f,d=depth[x]-depth[y];
for (int i=0;i<=20;i++)
if ((1<<i)&d) ret=min(ret,k[x][i]),x=f[x][i];
return ret;
}
int main()
{
n=read();m=read();
start();
for (int i=0;i<m;i++)
edge[i].x=read(),edge[i].y=read(),edge[i].z=read();
kruskal();
q=read();
for (int i=1;i<=n;i++) if (visit[i]) dfs(i);
for (int i=0;i<q;i++)
{
int a,b,p;
a=read();b=read();
if (getfa(a)!=getfa(b)) {cout<<-1<<endl;continue;}
else
{
p=lca(a,b);
cout<<min(ask(a,p),ask(b,p))<<endl;
}
}
return 0;
}