【洛谷1965】转圈游戏 蒙哥马利快速幂模算法

25 篇文章 0 订阅
17 篇文章 0 订阅

 

转圈游戏

题目描述

n 个小伙伴(编号从 0 n-1)围坐一圈玩游戏。按照顺时针方向给 n个位置编号,从0 n-1。最初,第 0号小伙伴在第 0 号位置,第 1 号小伙伴在第 1号位置,……,依此类推。游戏规则如下:每一轮第 0号位置上的小伙伴顺时针走到第 m号位置,第 1 号位置小伙伴走到第 m+1 号位置,……,依此类推,第n − m号位置上的小伙伴走到第 0号位置,第n-m+1 号位置上的小伙伴走到第 1 号位置,……,第 n-1号位置上的小伙伴顺时针走到第m-1号位置。

现在,一共进行了 10^k轮,请问 x号小伙伴最后走到了第几号位置。

输入输出格式

输入格式:
 

输入文件名为 circle.in

输入共 1 行,包含 4个整数 nmkx,每两个整数之间用一个空格隔开。

输出格式:
 

输出文件名为 circle.out

输出共 1 行,包含 1个整数,表示 10

k 轮后 x号小伙伴所在的位置编号。

输入输出样例

输入样例#1 

10 3 4 5

输出样例#1 

5

说明

对于 30%的数据,0 < k < 7

对于 80%的数据,0 < k < 10^7

对于 100%的数据,1 <n < 1,000,0000 < m < n1 ≤ x ≤ n0< k < 10^9

 

不会快速幂取模只有30分……

原来快速幂的取模叫蒙哥马利快速幂模算法,长姿势了。

奉上板子

 

 

#include<iostream>
#include<cstdio>
#define ll long long
using namespace std;

ll n,m,x,k;

ll q_pow(ll a,ll k,ll p)
{
    ll ret=1;
    while(k)
    {
        if (k&1) ret=(ret*a)%p;
        a=(a*a)%p;//反正就是在这两个地方取模就行了
        k>>=1;
    }
    return ret;
}

int main()
{
    cin>>n>>m>>k>>x;
    cout<<(x+m*q_pow(10,k,n)%n)%n<<endl;
    return 0;
}

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值