[USACO1.4]等差数列Arithmetic Progressions 枚举

18 篇文章 0 订阅

[USACO1.4]等差数列Arithmetic Progressions

题目描述

一个等差数列是一个能表示成a, a+b,a+2b,..., a+nb (n=0,1,2,3,...)的数列。

在这个问题中a是一个非负的整数,b是正整数。写一个程序来找出在双平方数集合(双平方数集合是所有能表示成p的平方 + q的平方的数的集合,其中pq为非负整数)S中长度为n的等差数列。

输入输出格式

输入格式:

第一行:N(3<= N<=25),要找的等差数列的长度。

第二行:M(1<= M<=250),搜索双平方数的上界0 <= p,q <= M

输出格式:

如果没有找到数列,输出`NONE'

如果找到了,输出一行或多行, 每行由二个整数组成:a,b

这些行应该先按b排序再按a排序。

所求的等差数列将不会多于10,000个。

输入输出样例

输入样例#1 

5
7

输出样例#1 

1 4
37 4
2 8
29 8
1 12
5 12
13 12
17 12
5 20
2 24

 

枚举前两个数,找一下即可。


#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#define lim 250*250*2
using namespace std;

struct haha{int x,y;}res[101000];
bool f[lim+10];
int a[101000];
int n,m;

bool cmp(haha p,haha q){return p.y==q.y?p.x<q.x:p.y<q.y;}
bool judge(int a,int b)
{
    int cur=1;
    while(cur<n)
    {
        a+=b;
        if (f[a]) cur++;
        else return false;
    }
    return true;
}

int main()
{
    memset(f,0,sizeof(f));
    cin>>n>>m;int mm=2*m*m;
    for (int p=0;p<=m;p++)
        for (int q=0;q<=m;q++)
            f[p*p+q*q]=1;
    int cnt=0,tot=0;
    for (int i=0;i<=lim;i++)
        if (f[i]) a[cnt++]=i;
    for (int i=0;i<cnt;i++)
        for (int j=i+1;j<cnt;j++)
        {
            int cha=a[j]-a[i];
            if (a[j]+(n-2)*cha>mm) break;//常数优化也是优化,不加优化就会T,qwq。
            if(judge(a[i],cha))
                res[tot].x=a[i],res[tot++].y=cha;
        }
    sort(res,res+tot,cmp);
    if (!tot) puts("NONE");
    else
        for (int i=0;i<tot;i++) cout<<res[i].x<<' '<<res[i].y<<endl;
    return 0;
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值