[USACO1.4]等差数列Arithmetic Progressions
题目描述
一个等差数列是一个能表示成a, a+b,a+2b,..., a+nb (n=0,1,2,3,...)的数列。
在这个问题中a是一个非负的整数,b是正整数。写一个程序来找出在双平方数集合(双平方数集合是所有能表示成p的平方 + q的平方的数的集合,其中p和q为非负整数)S中长度为n的等差数列。
输入输出格式
输入格式:
第一行:N(3<= N<=25),要找的等差数列的长度。
第二行:M(1<= M<=250),搜索双平方数的上界0 <= p,q <= M。
输出格式:
如果没有找到数列,输出`NONE'。
如果找到了,输出一行或多行, 每行由二个整数组成:a,b。
这些行应该先按b排序再按a排序。
所求的等差数列将不会多于10,000个。
输入输出样例
输入样例#1:
5
7
输出样例#1:
1 4
37 4
2 8
29 8
1 12
5 12
13 12
17 12
5 20
2 24
枚举前两个数,找一下即可。
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#define lim 250*250*2
using namespace std;
struct haha{int x,y;}res[101000];
bool f[lim+10];
int a[101000];
int n,m;
bool cmp(haha p,haha q){return p.y==q.y?p.x<q.x:p.y<q.y;}
bool judge(int a,int b)
{
int cur=1;
while(cur<n)
{
a+=b;
if (f[a]) cur++;
else return false;
}
return true;
}
int main()
{
memset(f,0,sizeof(f));
cin>>n>>m;int mm=2*m*m;
for (int p=0;p<=m;p++)
for (int q=0;q<=m;q++)
f[p*p+q*q]=1;
int cnt=0,tot=0;
for (int i=0;i<=lim;i++)
if (f[i]) a[cnt++]=i;
for (int i=0;i<cnt;i++)
for (int j=i+1;j<cnt;j++)
{
int cha=a[j]-a[i];
if (a[j]+(n-2)*cha>mm) break;//常数优化也是优化,不加优化就会T,qwq。
if(judge(a[i],cha))
res[tot].x=a[i],res[tot++].y=cha;
}
sort(res,res+tot,cmp);
if (!tot) puts("NONE");
else
for (int i=0;i<tot;i++) cout<<res[i].x<<' '<<res[i].y<<endl;
return 0;
}