算法学习笔记之散列表与非线性表结构
记录一些关于散列表与非线性表结构,包括二叉树,红黑树,堆,图等相关数据结构的学习笔记,接上一篇《算法学习笔记之复杂度分析与线性表》
文章目录
1. 散列表
散列表用的是数组支持按照下标随机访问数据的特性,所以散列表其实就是数组的一种扩展,由数组演化而来。可以说,如果没有数组,就没有散列表。散列表的英文叫“Hash Table”,我们平时也叫它“哈希表”或者“Hash 表”。
散列表用的就是数组支持按照下标随机访问的时候,时间复杂度是 O(1) 的特性。我们通过散列函数把元素的键值映射为下标,然后将数据存储在数组中对应下标的位置。当我们按照键值查询元素时,我们用同样的散列函数,将键值转化数组下标,从对应的数组下标的位置取数据。
散列表两个核心问题是散列函数设计和散列冲突解决。
1.1 散列函数
散列函数,顾名思义,它是一个函数。我们可以把它定义成 hash(key),其中 key 表示元素的键值,hash(key) 的值表示经过散列函数计算得到的散列值。
- 散列函数计算得到的散列值是一个非负整数;
- 如果 key1 = key2,那 hash(key1) == hash(key2);
- 如果 key1 ≠ key2,那 hash(key1) ≠ hash(key2)。
1.2 散列冲突
常用的散列冲突解决方法有两类,开放寻址法(open addressing)和链表法(chaining)。
1.2.1 开放寻址法
- 线性探测(Linear Probing)
当我们往散列表中插入数据时,如果某个数据经过散列函数散列之后,存储位置已经被占用了,我们就从当前位置开始,依次往后查找,看是否有空闲位置,直到找到为止。 - 二次探测(Quadratic probing)
线性探测每次探测的步长是 1,那它探测的下标序列就是 hash(key)+0,hash(key)+1,hash(key)+2……而二次探测探测的步长就变成了原来的“二次方” - 双重散列(Double hashing)
所谓双重散列,意思就是不仅要使用一个散列函数。我们使用一组散列函数 hash1(key),hash2(key),hash3(key)……我们先用第一个散列函数,如果计算得到的存储位置已经被占用,再用第二个散列函数,依次类推,直到找到空闲的存储位置。
为了尽可能保证散列表的操作效率,一般情况下,我们会尽可能保证散列表中有一定比例的空闲槽位。我们用装载因子(load factor)来表示空位的多少。装载因子的计算公式是:散列表的装载因子=填入表中的元素个数/散列表的长度,装载因子越大,说明空闲位置越少,冲突越多,散列表的性能会下降。
1.2.2. 链表法
在散列表中,每个“桶(bucket)”或者“槽(slot)”会对应一条链表,所有散列值相同的元素我们都放到相同槽位对应的链表中。
1.3 设计散列函数
- 当数据量比较小、装载因子小的时候,适合采用开放寻址法。这也是 Java 中的ThreadLocalMap使用开放寻址法解决散列冲突的原因。
- 基于链表的散列冲突处理方法比较适合存储大对象、大数据量的散列表,而且,比起开放寻址法,它更加灵活,支持更多的优化策略,比如用红黑树代替链表。
- Java 中的 HashMap
int hash(Object key) {
int h = key.hashCode();
return (h ^ (h >>> 16)) & (capicity -1); //capicity表示散列表的大小
}
public int hashCode() {
int var1 = this.hash;
if(var1 == 0 && this.value.length > 0) {
char[] var2 = this.value;
for(int var3 = 0; var3 < this.value.length; ++var3) {
var1 = 31 * var1 + var2[var3];
}
this.hash = var1;
}
return var1;
}
- Java 中的 LinkedHashMap
LinkedHashMap 是通过双向链表和散列表这两种数据结构组合实现的。LinkedHashMap 中的“Linked”实际上是指的是双向链表,并非指用链表法解决散列冲突。
1.4 散列表总结
散列表这种数据结构虽然支持非常高效的数据插入、删除、查找操作,但是散列表中的数据都是通过散列函数打乱之后无规律存储的。也就说,它无法支持按照某种顺序快速地遍历数据。如果希望按照顺序遍历散列表中的数据,那我们需要将散列表中的数据拷贝到数组中,然后排序,再遍历。因为散列表是动态数据结构,不停地有数据的插入、删除,所以每当我们希望按顺序遍历散列表中的数据的时候,都需要先排序,那效率势必会很低。为了解决这个问题,我们将散列表和链表(或者跳表)结合在一起使用。
2. 哈希算法
2.1 概念定义
将任意长度的二进制值串映射为固定长度的二进制值串,这个映射的规则就是哈希算法,而通过原始数据映射之后得到的二进制值串就是哈希值。
- 从哈希值不能反向推导出原始数据(所以哈希算法也叫单向哈希算法);
- 对输入数据非常敏感,哪怕原始数据只修改了一个 Bit,最后得到的哈希值也大不相同;
- 散列冲突的概率要很小,对于不同的原始数据,哈希值相同的概率非常小;
- 哈希算法的执行效率要尽量高效,针对较长的文本,也能快速地计算出哈希值。
2.2 应用场景
安全加密,唯一标识,数据校验,散列函数,脱库加盐值(salt),负载均衡、数据分片、分布式存储(一致性哈希算法)。
3. 二叉树
3.1 二叉树的定义
“树”,里面每个元素我们叫作“节点”;用来连线相邻节点之间的关系,我们叫作“父子关系”。比如,A 节点就是 B 节点的父节点,B 节点是 A 节点的子节点。B、C、D 这三个节点的父节点是同一个节点,所以它们之间互称为兄弟节点。把没有父节点的节点叫作根节点,把没有子节点的节点叫作叶子节点或者叶节点。
- 高度(Height)
节点到叶子节点的最长路径,即边数,其实就是从下往上度量,从最底层开始计数,并且计数的起点是 0。 - 深度(Depth)
根节点到这个节点所经历的边的个数,从上往下度量的,从根结点开始度量,并且计数起点也是 0 - 层(Level)
根节点的高度,跟深度的计算类似,不过,计数起点是 1,也就是说根节点的位于第 1 层。
二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子节点和右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只有左子节点,有的节点只有右子节点。
- 叶子节点全都在最底层,除了叶子节点之外,每个节点都有左右两个子节点,这种二叉树就叫作满二叉树。
- 叶子节点都在最底下两层,最后一层的叶子节点都靠左排列,并且除了最后一层,其他层的节点个数都要达到最大,这种二叉树叫作完全二叉树。堆其实就是一种完全二叉树,最常用的存储方式就是数组。
3.2 二叉树的存储
存储一棵二叉树,我们有两种方法,一种是基于指针或者引用的二叉链式存储法,一种是基于数组的顺序存储法。
-
二叉链式存储法
每个节点有三个字段,其中一个存储数据,另外两个是指向左右子节点的指针。我们只要拎住根节点,就可以通过左右子节点的指针,把整棵树都串起来。这种存储方式我们比较常用。大部分二叉树代码都是通过这种结构来实现的。 -
顺序存储法
把根节点存储在下标 i = 1 的位置,那左子节点存储在下标 2 * i = 2 的位置,右子节点存储在 2 * i + 1 = 3 的位置。
组顺序存储的方式比较适合完全二叉树。
3.3 二叉树的遍历
- 前序遍历是指,对于树中的任意节点来说,先打印这个节点,然后再打印它的左子树,最后打印它的右子树。
- 中序遍历是指,对于树中的任意节点来说,先打印它的左子树,然后再打印它本身,最后打印它的右子树。中序遍历二叉查找树,可以输出有序的数据序列,时间复杂度是 O(n),非常高效。
- 后序遍历是指,对于树中的任意节点来说,先打印它的左子树,然后再打印它的右子树,最后打印这个节点本身
二叉树遍历的时间复杂度是 O(n)。
3.4 二叉查找树
二叉查找树最大的特点就是,支持动态数据集合的快速插入、删除、查找操作。
二叉查找树要求,在树中的任意一个节点,其左子树中的每个节点的值,都要小于这个节点的值,而右子树节点的值都大于这个节点的值。时间复杂度其实都跟树的高度成正比,也就是 O(height)
public class BinarySearchTree {
private Node tree;
public Node find(int data) {
Node p = tree;
while (p != null) {
if (data < p.data) p = p.left;
else if (data > p.data) p = p.right;
else return p;
}
return null;
}
public static class Node {
private int data;
private Node left;
private Node right;
public Node(int data) {
this.data = data;
}
}
}
- 二叉查找树的插入操作
public void insert(int data) {
if (tree == null) {
tree = new Node(data);
return;
}
Node p = tree;
while (p != null) {
if (data > p.data) {
if (p.right == null) {
p.right = new Node(data);
return;
}
p = p.right;
} else { // data < p.data
if (p.left == null) {
p.left = new Node(data);
return;
}
p = p.left;
}
}
}
- 二叉查找树的删除操作
public void delete(int data) {
Node p = tree; // p指向要删除的节点,初始化指向根节点
Node pp = null; // pp记录的是p的父节点
while (p != null && p.data != data) {
pp = p;
if (data > p.data) p = p.right;
else p = p.left;
}
if (p == null) return; // 没有找到
// 要删除的节点有两个子节点
if (p.left != null && p.right != null) { // 查找右子树中最小节点
Node minP = p.right;
Node minPP = p; // minPP表示minP的父节点
while (minP.left != null) {
minPP = minP;
minP = minP.left;
}
p.data = minP.data; // 将minP的数据替换到p中
p = minP; // 下面就变成了删除minP了
pp = minPP;
}
// 删除节点是叶子节点或者仅有一个子节点
Node child; // p的子节点
if (p.left != null) child = p.left;
else if (p.right != null) child = p.right;
else child = null;
if (pp == null) tree = child; // 删除的是根节点
else if (pp.left == p) pp.left = child;
else pp.right = child;
}
- 散列表与二叉树
- 散列表中的数据是无序存储的,如果要输出有序的数据,需要先进行排序。而对于二叉查找树来说,我们只需要中序遍历,就可以在 O(n) 的时间复杂度内,输出有序的数据序列。
- 散列表扩容耗时很多,而且当遇到散列冲突时,性能不稳定,尽管二叉查找树的性能不稳定,但是在工程中,我们最常用的平衡二叉查找树的性能非常稳定,时间复杂度稳定在 O(logn)。
- 因为哈希冲突的存在,这个常量不一定比 logn 小,所以实际的查找速度可能不一定比 O(logn) 快。加上哈希函数的耗时,也不一定就比平衡二叉查找树的效率高。
- 散列表的构造比二叉查找树要复杂,需要考虑的东西很多。比如散列函数的设计、冲突解决办法、扩容、缩容等。平衡二叉查找树只需要考虑平衡性这一个问题,而且这个问题的解决方案比较成熟、固定。
- 为了避免过多的散列冲突,散列表装载因子不能太大,特别是基于开放寻址法解决冲突的散列表,不然会浪费一定的存储空间。
4. 红黑树
二叉树中任意一个节点的左右子树的高度相差不能大于 1。红黑树的英文是“Red-Black Tree”,简称 R-B Tree。
- 红黑树中的节点,一类被标记为黑色,一类被标记为红色。
- 根节点是黑色的
- 每个叶子节点都是黑色的空节点(NIL),也就是说,叶子节点不存储数据;
- 任何相邻的节点都不能同时为红色,也就是说,红色节点是被黑色节点隔开的;
- 每个节点,从该节点到达其可达叶子节点的所有路径,都包含相同数目的黑色节点;
红黑树是一种性能非常稳定的二叉查找树,所以,在工程中,但凡是用到动态插入、删除、查找数据的场景,都可以用到它。不过,它实现起来比较复杂,如果自己写代码实现,难度会有些高,这个时候,我们其实更倾向用跳表来替代它。
5. 堆
堆是一个完全二叉树;堆中每一个节点的值都必须大于等于(或小于等于)其子树中每个节点的值。即堆中每个节点的值都大于等于(或者小于等于)其左右子节点的值。这两种表述是等价的。对于每个节点的值都大于等于子树中每个节点值的堆,我们叫作“大顶堆”。对于每个节点的值都小于等于子树中每个节点值的堆,我们叫作“小顶堆”。
数组中下标为 i 的节点的左子节点,就是下标为 i∗2 的节点,右子节点就是下标为 i∗2+1 的节点,父节点就是下标为 2i 的节点。
5.1 往堆中插入一个元素
让新插入的节点与父节点对比大小。如果不满足子节点小于等于父节点的大小关系,我们就互换两个节点。一直重复这个过程,直到父子节点之间满足刚说的那种大小关系。
public class Heap {
private int[] a; // 数组,从下标1开始存储数据
private int n; // 堆可以存储的最大数据个数
private int count; // 堆中已经存储的数据个数
public Heap(int capacity) {
a = new int[capacity + 1];
n = capacity;
count = 0;
}
public void insert(int data) {
if (count >= n) return; // 堆满了
++count;
a[count] = data;
int i = count;
while (i/2 > 0 && a[i] > a[i/2]) { // 自下往上堆化
swap(a, i, i/2); // swap()函数作用:交换下标为i和i/2的两个元素
i = i/2;
}
}
}
5.2 删除堆顶元素
我们把最后一个节点放到堆顶,然后利用同样的父子节点对比方法。对于不满足父子节点大小关系的,互换两个节点,并且重复进行这个过程,直到父子节点之间满足大小关系为止。这就是从上往下的堆化方法。
public void removeMax() {
if (count == 0) return -1; // 堆中没有数据
a[1] = a[count];
--count;
heapify(a, count, 1);
}
private void heapify(int[] a, int n, int i) { // 自上往下堆化
while (true) {
int maxPos = i;
if (i*2 <= n && a[i] < a[i*2]) maxPos = i*2;
if (i*2+1 <= n && a[maxPos] < a[i*2+1]) maxPos = i*2+1;
if (maxPos == i) break;
swap(a, i, maxPos);
i = maxPos;
}
}
往堆中插入一个元素和删除堆顶元素的时间复杂度都是 O(logn)。
5.3 堆排序
首先将数组原地建成一个堆。所谓“原地”就是,不借助另一个数组,就在原数组上操作。建堆的过程,有两种思路。
private static void buildHeap(int[] a, int n) {
for (int i = n/2; i >= 1; --i) {
heapify(a, n, i);
}
}
private static void heapify(int[] a, int n, int i) {
while (true) {
int maxPos = i;
if (i*2 <= n && a[i] < a[i*2]) maxPos = i*2;
if (i*2+1 <= n && a[maxPos] < a[i*2+1]) maxPos = i*2+1;
if (maxPos == i) break;
swap(a, i, maxPos);
i = maxPos;
}
}
建堆的时间复杂度就是 O(n)。
建堆结束之后,数组中的数据已经是按照大顶堆的特性来组织的。数组中的第一个元素就是堆顶,也就是最大的元素。我们把它跟最后一个元素交换,那最大元素就放到了下标为 n 的位置。当堆顶元素移除之后,我们把下标为 n 的元素放到堆顶,然后再通过堆化的方法,将剩下的 n−1 个元素重新构建成堆。堆化完成之后,我们再取堆顶的元素,放到下标是 n−1 的位置,一直重复这个过程,直到最后堆中只剩下标为 1 的一个元素,排序工作就完成了。
// n表示数据的个数,数组a中的数据从下标1到n的位置。
public static void sort(int[] a, int n) {
buildHeap(a, n);
int k = n;
while (k > 1) {
swap(a, 1, k);
--k;
heapify(a, k, 1);
}
}
建堆过程的时间复杂度是 O(n),排序过程的时间复杂度是 O(nlogn),所以,堆排序整体的时间复杂度是 O(nlogn)。堆排序不是稳定的排序算法。
5.4 堆的应用
5.4.1 优先级队列
一个堆就可以看作一个优先级队列。很多时候,它们只是概念上的区分而已。往优先级队列中插入一个元素,就相当于往堆中插入一个元素;从优先级队列中取出优先级最高的元素,就相当于取出堆顶元素。很多数据结构和算法都要依赖它,比如赫夫曼编码、图的最短路径、最小生成树算法等等。很多语言中,都提供了优先级队列的实现,比如,Java 的 PriorityQueue,C++ 的 priority_queue 等。
优先级队列应用:合并有序小文件,高性能定时器…
5.4.2 利用堆求 Top K
一直维护一个 K 大小的小顶堆,当有数据被添加到集合中时,就拿它与堆顶的元素对比。如果比堆顶元素大,我们就把堆顶元素删除,并且将这个元素插入到堆中;如果比堆顶元素小,则不做处理。这样,无论任何时候需要查询当前的前 K 大数据,我们都可以立刻返回给他。
5.4.3 利用堆求中位数
面对动态数据集合,中位数在不停地变动,借助堆这种数据结构,我们不用排序,就可以非常高效地实现求中位数操作。
维护两个堆,一个大顶堆,一个小顶堆。大顶堆中存储前半部分数据,小顶堆中存储后半部分数据,且小顶堆中的数据都大于大顶堆中的数据。
利用两个堆不仅可以快速求出中位数,还可以快速求其他百分位的数据。
6. 图
6.1 图结构定义
- 图中的元素我们就叫作顶点(vertex)。图中的一个顶点可以与任意其他顶点建立连接关系。我们把这种建立的关系叫作边(edge)。跟顶点相连接的边的条数叫做,度(degree)
- 在图中画一条从 A 到 B 的带箭头的边,来表示边的方向。画一条从 A 指向 B 的边,再画一条从 B 指向 A 的边。我们把这种边有方向的图叫作“有向图”。以此类推,我们把边没有方向的图就叫作“无向图”。
- 在有向图中,我们把度分为入度(In-degree)和出度(Out-degree)。顶点的入度,表示有多少条边指向这个顶点;顶点的出度,表示有多少条边是以这个顶点为起点指向其他顶点。
- 带权图(weighted graph)。在带权图中,每条边都有一个权重(weight)
6.2 图的存储结构
-
邻接矩阵(Adjacency Matrix)
邻接矩阵的底层依赖一个二维数组。对于无向图来说,如果顶点 i 与顶点 j 之间有边,我们就将 A[i][j]和 A[j][i]标记为 1;对于有向图来说,如果顶点 i 到顶点 j 之间,有一条箭头从顶点 i 指向顶点 j 的边,那我们就将 A[i][j]标记为 1。同理,如果有一条箭头从顶点 j 指向顶点 i 的边,我们就将 A[j][i]标记为 1。对于带权图,数组中就存储相应的权重。 -
邻接表(Adjacency List)
针对上面邻接矩阵比较浪费内存空间的问题,我们来看另外一种图的存储方法,邻接表(Adjacency List)。
有向图的邻接表存储方式,每个顶点对应的链表里面,存储的是指向的顶点。
对于无向图来说,,每个顶点的链表中存储的,是跟这个顶点有边相连的顶点。 -
逆邻接表
逆邻接表中,每个顶点的链表中,存储的是指向这个顶点的顶点。
我们可以将邻接表中的链表改成平衡二叉查找树。实际开发中,我们可以选择用红黑树。这样,我们就可以更加快速地查找两个顶点之间是否存在边了。当然,这里的二叉查找树可以换成其他动态数据结构,比如跳表、散列表等。除此之外,我们还可以将链表改成有序动态数组,可以通过二分查找的方法来快速定位两个顶点之间否是存在边。
- 总结
邻接矩阵存储方法的缺点是比较浪费空间,但是优点是查询效率高,而且方便矩阵运算。邻接表存储方法中每个顶点都对应一个链表,存储与其相连接的其他顶点。尽管邻接表的存储方式比较节省存储空间,但链表不方便查找,所以查询效率没有邻接矩阵存储方式高。针对这个问题,可以将链表换成更加高效的动态数据结构,比如平衡二叉查找树、跳表、散列表等。
6.4 图的搜索
图上的搜索算法,最直接的理解就是,在图中找出从一个顶点出发,到另一个顶点的路径。
6.4.1 广度优先搜索
广度优先搜索(Breadth-First-Search),我们平常都把简称为 BFS。直观地讲,它其实就是一种“地毯式”层层推进的搜索策略,即先查找离起始顶点最近的,然后是次近的,广度优先搜索需要借助队列来实现,遍历得到的路径就是,起始顶点到终止顶点的最短路径。
- 无向图的数据结构实现
public class Graph { // 无向图
private int v; // 顶点的个数
private LinkedList<Integer> adj[]; // 邻接表
public Graph(int v) {
this.v = v;
adj = new LinkedList[v];
for (int i=0; i<v; ++i) {
adj[i] = new LinkedList<>();
}
}
public void addEdge(int s, int t) { // 无向图一条边存两次
adj[s].add(t);
adj[t].add(s);
}
}
- 算法实现
public void bfs(int s, int t) {
if (s == t) return;
// 是用来记录已经被访问的顶点,用来避免顶点被重复访问。
boolean[] visited = new boolean[v];
visited[s]=true;
// 用来存储已经被访问、但相连的顶点还没有被访问的顶点。
Queue<Integer> queue = new LinkedList<>();
queue.add(s);
// 用来记录搜索路径。
int[] prev = new int[v];
for (int i = 0; i < v; ++i) {
prev[i] = -1;
}
while (queue.size() != 0) {
int w = queue.poll();
for (int i = 0; i < adj[w].size(); ++i) {
int q = adj[w].get(i);
if (!visited[q]) {
prev[q] = w;
if (q == t) {
print(prev, s, t);
return;
}
visited[q] = true;
queue.add(q);
}
}
}
}
private void print(int[] prev, int s, int t) { // 递归打印s->t的路径
if (prev[t] != -1 && t != s) {
print(prev, s, prev[t]);
}
System.out.print(t + " ");
}
6.4.2 深度优先搜索
深度优先搜索用的是回溯思想,非常适合用递归实现。换种说法,深度优先搜索是借助栈来实现的。在执行效率方面,深度优先和广度优先搜索的时间复杂度都是 O(E),空间复杂度是 O(V)。深度优先搜索找出来的路径,并不是顶点 s 到顶点 t 的最短路径。
boolean found = false; // 全局变量或者类成员变量
public void dfs(int s, int t) {
found = false;
boolean[] visited = new boolean[v];
int[] prev = new int[v];
for (int i = 0; i < v; ++i) {
prev[i] = -1;
}
recurDfs(s, t, visited, prev);
print(prev, s, t);
}
private void recurDfs(int w, int t, boolean[] visited, int[] prev) {
if (found == true) return;
visited[w] = true;
if (w == t) {
found = true;
return;
}
for (int i = 0; i < adj[w].size(); ++i) {
int q = adj[w].get(i);
if (!visited[q]) {
prev[q] = w;
recurDfs(q, t, visited, prev);
}
}
}