weixin_30633405的博客

私信 关注
weixin_30633405
码龄6年
  • 408,651
    被访问量
  • 暂无
    原创文章
  • 42,686
    作者排名
  • 46
    粉丝数量
  • 于 2015-08-16 加入CSDN
获得成就
  • 获得65次点赞
  • 内容获得0次评论
  • 获得436次收藏
荣誉勋章
  • 最近
  • 文章
  • 资源
  • 问答
  • 课程
  • 帖子
  • 收藏
  • 关注/订阅

CentOS7安装MySQL 密码方面

1.为了加强安全性,MySQL5.7为root用户随机生成了一个密码,在error log中,关于error log的位置,如果安装的是RPM包,则默认是/var/log/mysqld.log。  可通过# grep "password" /var/log/mysqld.log 命令获取MySQL的临时密码可通过# grep "password" /var/log/m...
转载
97阅读
0评论
0点赞
发布博客于 2 年前

大数据项目——互联网精准营销——数据清洗

使用kettle进行数据清洗: 1.新建转换去除手机销售信息表的重复记录  要求:去除该字段中的所有空格,方便后续聚合统计,字母统一大小写,去除该字段中的所有特殊字符(各种标点符号) 这里可选用排序加去重组件,也可用哈希去重。然后用字符串操作去括号,大小写统一。字符串替换的正则表达式去除特殊字符。2.新建转换去除用户评论...
转载
160阅读
0评论
0点赞
发布博客于 2 年前

CentOS7 安装mysql(YUM源方式)

1.下载mysql源安装包$ wgethttp://dev.mysql.com/get/mysql57-community-release-el7-8.noarch.rpm2.安装mysql源$yum localinstall mysql57-community-release-el7-8.noarch.rpm3.检查mysql源是否安装成功$yu...
转载
79阅读
0评论
0点赞
发布博客于 2 年前

CentOS7 卸载mysql(YUM源方式)

防止重装yum方式查看yum是否安装过mysqlyum list installed mysql*如或显示了列表,说明系统中有MySQLyum卸载根据列表上的名字yum remove mysql-community-client mysql-community-common mysql-community-libs my...
转载
109阅读
0评论
0点赞
发布博客于 2 年前

k-近邻算法python代码实现(非常全)

1、k近邻算法是学习机器学习算法最为经典和简单的算法,它是机器学习算法入门最好的算法之一,可以非常好并且快速地理解机器学习的算法的框架与应用。它是一种经典简单的分类算法,当然也可以用来解决回归问题。2、kNN机器学习算法具有以下的特点:(1)思想极度简单(2)应用的数学知识非常少(3)解决相关问题的效果非常好(4)可以解释机器学习算法使用过程中的很多细节问题(5)更加完整地刻画机器学习应...
转载
79阅读
0评论
0点赞
发布博客于 2 年前

pytorch中tensor张量数据基础入门

pytorch张量数据类型入门1、对于pytorch的深度学习框架,其基本的数据类型属于张量数据类型,即Tensor数据类型,对于python里面的int,float,int array,flaot array对应于pytorch里面即在前面加一个Tensor即可——intTensor ,Float tensor,IntTensor of size [d1,d2...], FloatTe...
转载
601阅读
0评论
1点赞
发布博客于 2 年前

python如何画三维图像?

python三维图像输出的代码如下所示:#画3D函数图像输出from mpl_toolkits.mplot3d import Axes3Dfrom matplotlib import cmimport matplotlib.pyplot as pltimport numpy as npimport mpl_toolkits.mplot3dfigure=plt.figure()#ax = ...
转载
143阅读
0评论
0点赞
发布博客于 2 年前

pytorch梯度下降法讲解(非常详细)

pytorch随机梯度下降法1、梯度、偏微分以及梯度的区别和联系(1)导数是指一元函数对于自变量求导得到的数值,它是一个标量,反映了函数的变化趋势;(2)偏微分是多元函数对各个自变量求导得到的,它反映的是多元函数在各个自变量方向上的变化趋势,也是标量;(3)梯度是一个矢量,是有大小和方向的,其方向是指多元函数增大的方向,而大小是指增长的趋势快慢。2、在寻找函数的最小值的时候可...
转载
154阅读
0评论
0点赞
发布博客于 2 年前

pytorch数学运算与统计属性入门(非常易懂)

pytorch数学运算与统计属性入门1、Broadcasting (维度)自动扩展,具有以下两个重要特征:(1)expand (2)without copying data重点的核心实现功能是:(1)在前面增加缺失的维度(2)将其中新增加的维度的size扩展到需要相互运算的tensor维度的same size图12、broadcasting自动扩展=unsqueeze(增加维度)...
转载
68阅读
0评论
0点赞
发布博客于 2 年前

pytorch张量数据索引切片与维度变换操作大全(非常全)

(1-1)pytorch张量数据的索引与切片操作1、对于张量数据的索引操作主要有以下几种方式:a=torch.rand(4,3,28,28):DIM=4的张量数据a(1)a[:2]:取第一个维度的前2个维度数据(不包括2);(2)a[:2,:1,:,:]:取第一个维度的前两个数据,取第2个维度的前1个数据,后两个维度全都取到;(3)a[:2,1:,:,:]:取第一个维度的前两个数据,取第...
转载
160阅读
0评论
1点赞
发布博客于 2 年前

pytorch深度学习神经网络实现手写字体识别

利用平pytorch搭建简单的神经网络实现minist手写字体的识别,采用三层线性函数迭代运算,使得其具备一定的非线性转化与运算能力,其数学原理如下:其具体实现代码如下所示:import torchimport matplotlib.pyplot as pltdef plot_curve(data): #曲线输出函数构建 fig=plt.figure()...
转载
141阅读
0评论
0点赞
发布博客于 2 年前

如何创建Github账号及将本地项目上传至GitHub?

如何将本地项目上传至GitHub首先你需要一个github账号,所有还没有的话先去注册吧!https://github.com/我们使用git需要先安装git工具,这里给出下载地址,下载后一路直接安装即可:https://git-for-windows.github.io/1.进入Github首页,点击New repository新建一个项目2.填写相...
转载
49阅读
0评论
0点赞
发布博客于 2 年前

pytorch神经网络解决回归问题(非常易懂)

对于pytorch的深度学习框架,在建立人工神经网络时整体的步骤主要有以下四步:1、载入原始数据2、构建具体神经网络3、进行数据的训练4、数据测试和验证pytorch神经网络的数据载入,以MINIST书写字体的原始数据为例:import torchimport matplotlib.pyplot as pltdef plot_curve(data):...
转载
395阅读
0评论
0点赞
发布博客于 2 年前

sklearn中调用集成学习算法

1、集成学习是指对于同一个基础数据集使用不同的机器学习算法进行训练,最后结合不同的算法给出的意见进行决策,这个方法兼顾了许多算法的"意见",比较全面,因此在机器学习领域也使用地非常广泛。生活中其实也普遍存在集成学习的方法,比如买东西找不同的人进行推荐,病情诊断进行多专家会诊等,考虑各方面的意见进行最终的综合的决策,这样得到的结果可能会更加的全面和准确。另外,sklearn中也提供了集成学...
转载
59阅读
0评论
0点赞
发布博客于 2 年前

神经网络入门介绍(非常易懂)

//2019.09.10神经网络入门与学习1、神经网络的发展主要得益于三个方面的进步:(1)2进制的创新能力的发展(2)软硬件能力的发展;(3)人的性价比的下降。2、神经网络的成熟应用目前主要体现在分类识别上,具体来说可以分类到三个方面:(1)图像识别:主要用于人脸识别和自动驾驶;(2)语音识别:主要用于语音助手等;(3)文本识别:主要用于字体识别和新闻文本推送等。图13、神经网络的...
转载
68阅读
0评论
0点赞
发布博客于 2 年前

机器学习集成学习原理

//2019.08.19#机器学习集成学习1、集成学习是指对于同一个基础数据集使用不同的机器学习算法进行训练,最后结合不同的算法给出的意见进行决策,这个方法兼顾了许多算法的"意见",比较全面,因此在机器学习领域也使用地非常广泛。集成学习(ensemble learning)本身不是一个单独的机器学习算法,而是通过构建并结合多个机器学习器来完成学习任务。集成学习可以用于分类问题集成,回...
转载
52阅读
0评论
0点赞
发布博客于 2 年前

SVM数学原理推导

//2019.08.17#支撑向量机SVM(Support Vector Machine)1、支撑向量机SVM是一种非常重要和广泛的机器学习算法,它的算法出发点是尽可能找到最优的决策边界,使得模型的泛化能力尽可能地好,因此SVM对未来数据的预测也是更加准确的。2、支撑向量机SVM有两种:Hard Margin SVM和Soft Margin SVM,对于第一种严格的支...
转载
27阅读
0评论
0点赞
发布博客于 2 年前

sklearn实现决策树算法

1、决策树算法是一种非参数的决策算法,它根据数据的不同特征进行多层次的分类和判断,最终决策出所需要预测的结果。它既可以解决分类算法,也可以解决回归问题,具有很好的解释能力。另外,对于决策树的构建方法具有多种出发点,它具有多种构建方式,如何构建决策树的出发点主要在于决策树每一个决策点上需要在哪些维度上进行划分以及在这些维度的哪些阈值节点做划分等细节问题。具体在sklearn中调用决策树...
转载
67阅读
0评论
0点赞
发布博客于 2 年前

决策树算法原理

//2019.08.17#决策树算法1、决策树算法是一种非参数的决策算法,它根据数据的不同特征进行多层次的分类和判断,最终决策出所需要预测的结果。它既可以解决分类算法,也可以解决回归问题,具有很好的解释能力。图 原理图2、对于决策树的构建方法具有多种出发点,它具有多种构建方式,如何构建决策树的出发点主要在于决策树每一个决策点上需要在哪些维度上进行划分以及在这些维度的哪些阈值节...
转载
51阅读
0评论
0点赞
发布博客于 2 年前

sklearn调用SVM算法

1、支撑向量机SVM是一种非常重要和广泛的机器学习算法,它的算法出发点是尽可能找到最优的决策边界,使得模型的泛化能力尽可能地好,因此SVM对未来数据的预测也是更加准确的。2、SVM既可以解决分类问题,又可以解决回归问题,原理整体相似,不过也稍有不同。在sklearn章调用SVM算法的代码实现如下所示:#(一)sklearn中利用SVM算法解决分类问题impo...
转载
122阅读
0评论
0点赞
发布博客于 2 年前

sklearn调用分类算法的评价指标

sklearn分类算法的评价指标调用#二分类问题的算法评价指标import numpy as npimport matplotlib.pyplot as pltimport pandas as pdfrom sklearn import datasetsd=datasets.load_digits()x=d.datay=d.target.copy()print(len(y))y[d.ta...
转载
81阅读
0评论
0点赞
发布博客于 2 年前

机器学习分类算法评价指标

//2019.08.14#机器学习算法评价分类结果1、机器学习算法的评价指标一般有很多种,对于回归问题一般有MAE,MSE,AMSE等指标,而对于分类算法的评价指标则更多:准确度score,混淆矩阵、精准率、召回率以及ROC曲线、PR曲线等。2、对于分类算法只用准确率的评价指标是不够的,并且对于一些情况它是存在问题的,对于极度偏斜的数据集(比如对于癌症的发生预测),准确度的评价指标是存在...
转载
59阅读
0评论
0点赞
发布博客于 2 年前

机器学习的模型泛化

机器学习的模型泛化1、机器学习的模型误差主要含有三个方面的误差:模型偏差、模型方差以及不可避免的误差。2、对于机器学习训练模型的偏差主要因为对于问题本身的假设不对,比如非线性误差假设为线性误差进行训练和预测,算法层面上欠拟合是产生较大偏差的主要原因。另外主要来自于特征参量与最终结果的相关性,如果相关性很低或者高度不相关的话也会导致较大的偏差。3、对于机器学习模型的方差主要是来...
转载
51阅读
0评论
0点赞
发布博客于 2 年前

sklearn中实现多分类任务(OVR和OVO)

sklearn中实现多分类任务(OVR和OVO)1、OVR和OVO是针对一些二分类算法(比如典型的逻辑回归算法)来实现多分类任务的两种最为常用的方式,sklearn中专门有其调用的函数,其调用过程如下所示:#sklearn中对于所有的二分类算法提供了统一的OVR和OVO的分类器函数,可以方便调用实现所有二分类算法的多分类实现from sklearn.multiclass impo...
转载
367阅读
0评论
0点赞
发布博客于 2 年前

sklearn中的多项式回归算法

sklearn中的多项式回归算法1、多项式回归法多项式回归的思路和线性回归的思路以及优化算法是一致的,它是在线性回归的基础上在原来的数据集维度特征上增加一些另外的多项式特征,使得原始数据集的维度增加,然后基于升维后的数据集用线性回归的思路进行求解,从而得到相应的预测结果和各项的系数。2、多项式回归的函数在pyhton的sklearn机器学习库中没有专门的定义,因为它只是线性回归方...
转载
104阅读
0评论
0点赞
发布博客于 2 年前

PCA算法提取人脸识别特征脸(降噪)

PCA算法可以使得高维数据(mxn)降到低维,而在整个降维的过程中会丢失一定的信息,也会因此而实现降噪除噪的效果,另外,它通过降维可以计算出原本数据集的主成分分量Wk矩阵(kxn),如果将其作为数据样本,则可以将其作为原来数据集特征的主特征分量,如果用在人脸识别领域则可以作为人脸数据集的特征脸具体实现降噪效果和人脸特征脸的代码如下所示:#1-1利用手写字体数据集MNIST对PCA算法进行...
转载
76阅读
0评论
0点赞
发布博客于 2 年前

逻辑回归的数学原理推导及原理代码实现

逻辑回归的数学原理推导及原理代码实现1、逻辑回归算法是目前应用最为广泛的一种算法,虽然是回归算法,但是它解决的是分类问题,而不是回归问题,它的原理是将样本的特征与样本发生的概率,而概率是一个数字,因此将其称为回归算法。2、对于逻辑回归因为得到的预测结果是事件的发生概率,因此它的预测值值域为0-1之间,而概率转换函数一般选用的是sigmoid函数,它可以将这个实数范围转换为0-1,...
转载
69阅读
0评论
0点赞
发布博客于 2 年前

逻辑回归算法介绍

//2019.08.13#逻辑回归算法(Logistic Regression)1、根据2017-2018年人工智能与大数据科学领域的统计,不同的机器学习算法应用占比排名如下,其中,逻辑回归、决策树、随机森林以及人工神经网络算法占比前四,应用最为广泛,其次是贝叶斯算法、集成学习以及支持向量机SVM算法。目前全球人工智能最火最前沿的研究方向CNN和RNN深度学习算法排名第九和第十,主要是因...
转载
24阅读
0评论
0点赞
发布博客于 2 年前

sklearn中调用PCA算法

sklearn中调用PCA算法PCA算法是一种数据降维的方法,它可以对于数据进行维度降低,实现提高数据计算和训练的效率,而不丢失数据的重要信息,其sklearn中调用PCA算法的具体操作和代码如下所示:#sklearn中调用PCA函数进行相关的训练和计算(自定义数据)import numpy as npimport matplotlib.pyplot as pltx=np.em...
转载
98阅读
0评论
0点赞
发布博客于 2 年前

python实现PCA算法原理

PCA主成分分析法的数据主成分分析过程及python原理实现1、对于主成分分析法,在求得第一主成分之后,如果需要求取下一个主成分,则需要将原来数据把第一主成分去掉以后再求取新的数据X’的第一主成分,即为原来数据X的第二主成分,循环往复即可。2、利用PCA算法的原理进行数据的降维,其计算过程的数学原理如下所示,其降维的过程会丢失一定的信息,因此采用恢复过程恢复原来的高维数据后,它会...
转载
38阅读
0评论
0点赞
发布博客于 2 年前

机器学习中的过拟合和欠拟合及交叉验证

机器学习中的过拟合和欠拟合1、机器学习算法对于整体的数据训练和拟合,以典型的多元线性回归的方式为例,通过设定拟合的最高次数,然后对比输出的曲线结果可以看出,随着拟合函数次数的增大,其拟合线性回归模型的R2的值在不断地增大,均方差也在不断地减小,看起来拟合的结果越来越准确,其实质只是对于所存在原始数据的拟合误差越来越小,而对于新的数据样本则并不一定适合,这就是说存在过拟合(overfi...
转载
91阅读
0评论
0点赞
发布博客于 2 年前

PCA主成分分析算法的数学原理推导

PCA(Principal Component Analysis)主成分分析法的数学原理推导1、主成分分析法PCA的特点与作用如下:(1)是一种非监督学习的机器学习算法(2)主要用于数据的降维(3)通过降维,可以发现人类更加方便理解的特征(4)其他的应用:去燥;可视化等2、主成分分析法的数学原理主要是利用梯度上升法来最优化目标函数,即利用梯度上升法来求取效用函数的最大值,其具体的数学原理...
转载
61阅读
0评论
0点赞
发布博客于 2 年前

随机梯度下降法的调试

对于随机梯度法的调试,主要是对于损失函数的梯度的计算准确度的判断,即函数中关于各个参数偏导数DJ的计算,主要有两种方式:数学公式计算:利用多元函数的偏导计算,确定出其DJ的向量;(2)导数定义逼近法:利用逼近的方式进行各个参数偏导数的计算其不同两种方式代码实现如下所示:import numpy as npimport matplotlib.pyplot as plt#多元...
转载
26阅读
0评论
0点赞
发布博客于 2 年前

python表白实现代码(可视化与动画版)

python表白实现代码(可视化与动画版)如何优雅而又高大上地对自己的心爱女神表白了? ? ? 试试python表白的实现方式吧,是动画版的哦,保证可以如你所愿 ! ! !最终的实现效果如下:具体实现代码如下:#1-1导入turtle模块进行设计import turtleimport time#1-2画心形圆弧def hart_arc(...
转载
14368阅读
0评论
9点赞
发布博客于 2 年前

机器学习线性回归算法的评价指标(简单线性回归问题)

//2019.08.04#线性回归算法基础入门(Linear Regression)1、线性回归算法是一种非常典型的解决回归问题的监督学习算法,它具有以下几个特点:(1)典型的回归算法,可以解决实际中的回归问题;(2)思想简单,容易实现;(3)是许多强大的非线性算法模型的基础;(4)结果具有很好的可解释性;(5)蕴含机器学习中的很多重要思想。2、线性回归问题与分类问题的区别在于其标记结果...
转载
79阅读
0评论
0点赞
发布博客于 2 年前

sklearn中实现随机梯度下降法(多元线性回归)

sklearn中实现随机梯度下降法随机梯度下降法是一种根据模拟退火的原理对损失函数进行最小化的一种计算方式,在sklearn中主要用于多元线性回归算法中,是一种比较高效的最优化方法,其中的梯度下降系数(即学习率eta)随着遍历过程的进行在不断地减小。另外,在运用随机梯度下降法之前需要利用sklearn的StandardScaler将数据进行标准化。#sklearn中实现随...
转载
186阅读
0评论
0点赞
发布博客于 2 年前

最小二乘法的数学原理(机器学习线性回归)

最小二乘法的数学原理推导(机器学习线性回归)——燕江依/2019.08.04对于简单线性回归问题,即数据特征只有一个的基础数据集,要使得损失函数(这里是指真值与预测值之间误差的平方)最小,从而求得最优化的参数a和b,这个具体方法称为最小二乘法,利用最小二乘法,可以得到最佳的参数a和b的计算式,如下所示:而对于以上的数学原理,最优化与凸优化原理均起着非常关键的作用...
转载
39阅读
0评论
0点赞
发布博客于 2 年前

梯度下降法的python代码实现(多元线性回归)

梯度下降法的python代码实现(多元线性回归最小化损失函数)1、梯度下降法主要用来最小化损失函数,是一种比较常用的最优化方法,其具体包含了以下两种不同的方式:批量梯度下降法(沿着梯度变化最快的方向进行搜索最小值)和随机梯度下降法(主要随机梯度下降,通过迭代运算,收敛到最小值)2、随机梯度与批量梯度计算是梯度下降的两种比较常用的方法,随机梯度下降法计算效率较高,不过不太稳定,对于...
转载
442阅读
0评论
0点赞
发布博客于 2 年前

数据归一化Scaler-机器学习算法

//2019.08.03下午#机器学习算法的数据归一化(feature scaling)1、数据归一化的必要性:对于机器学习算法的基础训练数据,由于数据类型的不同,其单位及其量纲也是不一样的,而也正是因为如此,有时它会使得训练集中每个样本的不同列数据大小差异较大,即数量级相差比较大,这会导致在机器学习算法中不同列数据的权重很大的差异,数量级大的数据所体现出来的影响会远远大于数量级小的数据...
转载
89阅读
0评论
0点赞
发布博客于 2 年前

机器学习梯度下降法的数学原理(非常易懂)

//2019.08.06 机器学习算法中的梯度下降法(gradient descent)1、对于梯度下降法,具有以下几点特别说明:(1)不是一种机器学习算法,不可以解决分类或者回归问题;(2)是一种基于搜索的最优化方法;(3)作用是最小化损失函数;(4)梯度上升法:...
转载
25阅读
0评论
0点赞
发布博客于 2 年前

多元线性回归算法的python底层代码编写实现

1、对于多元线性回归算法,它对于数据集具有较好的可解释性,我们可以对比不过特征参数的输出系数的大小来判断它对数据的影响权重,进而对其中隐含的参数进行扩展和收集,提高整体训练数据的准确性。2、多元回归算法的数学原理及其底层程序编写如下:根据以上的数学原理可以从底层封装编写整体的多元线性回归算法如下:整体的多元线性回归算法封装起来就可以直接...
转载
53阅读
0评论
0点赞
发布博客于 2 年前

机器学习入门介绍(非常易懂)

机器学习入门介绍(非常易懂)//2019.07.31早上机器学习基本概念介绍1、机器学习的含义在于让机器去学习,其核心在于学习。2、最早的机器学习应用是在垃圾邮件的分辨,它开启了机器学习的领域和时代3、机器学习的典型应用主要体现在以下几个方面:(1)图像识别(2)语音识别(3)数字识别(4)......4、机器学习算法的学习必须建立在以下四个方面上面:(1)深入学习机器学习算...
转载
28阅读
0评论
0点赞
发布博客于 2 年前

多元线性回归算法python实现(非常经典)

对于多元线性回归算法,它对于数据集具有较好的可解释性,我们可以对比不过特征参数的输出系数的大小来判断它对数据的影响权重,进而对其中隐含的参数进行扩展和收集,提高整体训练数据的准确性。整体实现代码如下所示:#1-1导入相应的基础数据集模块import numpy as npimport matplotlib.pyplot as pltfrom sklearn import datasets...
转载
194阅读
0评论
0点赞
发布博客于 2 年前

keras人工神经网络构建入门

//2019.07.29-301、Keras 是提供一些高度可用神经网络框架的 Python API ,能帮助你快速的构建和训练自己的深度学习模型,它的后端是 TensorFlow 或者 Theano 。2、Keras 被认为是构建神经网络的未来,以下是一些它流行的原因:(1)轻量级和快速开发:Keras的目的是在消除样板代码。几行Keras代码就能比原生的 TensorFlow 代...
转载
74阅读
0评论
0点赞
发布博客于 2 年前

机器学习多元线性回归的数学原理推导

多元线性回归算法和正规方程解——燕江依/2019.08.051、对于多元线性回归算法,它对于数据集具有较好的可解释性,我们可以对比不过特征参数的输出系数的大小来判断它对数据的影响权重,进而对其中隐含的参数进行扩展和收集,提高整体训练数据的准确性。2、对于KNN算法和多元线性回归算法对比可以知道,KNN算法是一种非参数学习的算法,而多元线性回归算法是一种参数学习的算法,另外KN...
转载
25阅读
0评论
0点赞
发布博客于 2 年前

Python Sklearn.metrics 简介及应用示例

Python Sklearn.metrics 简介及应用示例利用Python进行各种机器学习算法的实现时,经常会用到sklearn(scikit-learn)这个模块/库。无论利用机器学习算法进行回归、分类或者聚类时,评价指标,即检验机器学习模型效果的定量指标,都是一个不可避免且十分重要的问题。因此,结合scikit-learn主页上的介绍,以及网上大神整理的一些资料,对常用的评...
转载
93阅读
0评论
0点赞
发布博客于 2 年前

python如何输出矩阵的行数与列数?

Python如何输出矩阵的行数与列数?对于pyhton里面所导入或者定义的矩阵或者表格数据,想要获得矩阵的行数和列数有以下方法:1、利用shape函数输出矩阵的行和列x.shape函数可以输出一个元组(m,n),其中元组的第一个数m表示矩阵的行数,元组的第二个数n为矩阵的列数具体代码如下:importnumpyasnpx=np.array([[1,2,5],...
转载
2108阅读
0评论
1点赞
发布博客于 2 年前

k-近邻算法的优缺点及拓展思考

//2019.08.03晚#k-近邻算法的拓展思考与总结1、k-近邻算法是一种非常典型的分类监督学习算法,它可以解决多分类的问题;另外,它的整体思想简单,效果强大。它也可以用来解决回归问题,使用的库函数为KNeighborsRegressor2、k-近邻算法虽然可以很好地解决多分类问题,但是它也有很多的缺点,具体主要有以下几个方面:(1)效率低下:对于每一个预测数据都需要O(mxn)...
转载
203阅读
0评论
0点赞
发布博客于 2 年前

机器学习算法的整体流程(非常易懂)

1、机器学习算法的整体使用步骤如下:(1)从scikitlearn库中调用相应的机器学习算法模块;(2)输入相应的算法参数定义一个新的算法;(3)输入基础训练数据集利用scaler对其进行数据归一化处理(4)对于归一化的数据集进行机器学习算法的训练fit过程;(5)输入测试数据集对其结果进行预测predict;(6)将预测结果与真实结果进行对比,输出其算法的准确率score(或者...
转载
57阅读
0评论
0点赞
发布博客于 2 年前

机器学习评价指标

metrics.pngwiki.png机器学习度量指标分类评估指标TN TP FN FPTP:预测为正向(P),实际上预测正确(T),即判断为正向的正确率TN:预测为负向(N),实际上预测正确(T),即判断为负向的正确率FP:预测为正向(P),实际上预测错误(F),误报率,即把负向判断...
转载
67阅读
0评论
0点赞
发布博客于 2 年前

pyhton机器学习入门基础(机器学习与决策树)

//2019.07.26#scikit-learn数据挖掘工具包1、Scikit learn是基于python的数据挖掘和机器学习的工具包,方便实现数据的数据分析与高级操作,是数据分析里面非常重要的工具包。2、Scikit Learn是数据挖掘重要的工具包,其官网为http://scikit-learn.org,可以方便地进行进行相关用法的查询。3、scikit-learn是一种开源的工...
转载
24阅读
0评论
0点赞
发布博客于 2 年前

pyhton中matplotlib箱线图的绘制(matplotlib双轴图、箱线图、散点图以及相关系数矩阵图))...

//2019.07.231、箱形图,又称为盒式图,一般可以很好地反映出数据分布的特征,也可以进行多项数据之间分布特征的比较,它主要包含五个基础数据:中位数,两个上下分位数以及上下边缘线数据其中的一些参数具体含义及其计算过程如下:2、双轴图的绘制代码:import numpy as npimport matplotlib.pyplot as pltimport pandas...
转载
249阅读
0评论
0点赞
发布博客于 2 年前

pyhton matplotlib可视化图像基础(二维函数图、柱状图、饼图、直方图以及折线图)...

//2019.07.22pyhton中matplotlib模块的应用pyhton中matplotlib是可视化图像库的第三方库,它可以实现图像的可视化,输出不同形式的图形1、可视化图形的输出和展示需要调用matplotlib第三方库的函数plt.show(),它的功能类似于print,相当于打印出自己需要输出的可视化图像,当然也可以用一些特殊的输出语句如下:%matplotlib.not...
转载
201阅读
0评论
0点赞
发布博客于 2 年前

机器学习算法中的网格搜索GridSearch实现(以k-近邻算法参数寻最优为例)

机器学习算法参数的网格搜索实现://2019.08.031、scikitlearn库中调用网格搜索的方法为:Grid search,它的搜索方式比较统一简单,其对于算法批判的标准比较复杂,是一种复合交叉批判方式,不仅仅是准确率。其具体的实现方式如下(以KNN算法的三大常用超参数为例):#使用scikitlearn中的gridsearch来进行机器学习算法的超参数的最佳网格搜索方式#1...
转载
301阅读
0评论
0点赞
发布博客于 2 年前

k-近邻算法采用for循环调参方法

//2019.08.02下午#机器学习算法中的超参数与模型参数1、超参数:是指机器学习算法运行之前需要指定的参数,是指对于不同机器学习算法属性的决定参数。通常来说,人们所说的调参就是指调节超参数。2、模型参数:是指算法在使用过程中需要学习得到的参数,即输入与输出之间映射函数中的参数,它需要通过对于训练数据集训练之后才可以得到。3、对于KNN算法,它是没有模型参数的,它的k参数就属于典型的...
转载
59阅读
0评论
0点赞
发布博客于 2 年前

scikitlearn库中调用k-近邻算法的操作步骤

1、k近邻算法可以说是唯一一个没有训练过程的机器学习算法,它含有训练基础数据集,但是是一种没有模型的算法,为了将其和其他算法进行统一,我们把它的训练数据集当做它的模型本身。2、在scikitlearn中调用KNN算法的操作步骤如下(利用实际例子举例如下):#1导入相应的数据可视化模块import numpy as npimport matplotlib.pyplot as plt #2输...
转载
61阅读
0评论
0点赞
发布博客于 2 年前

sklearn的train_test_split()各函数参数含义解释(非常全)

sklearn之train_test_split()函数各参数含义(非常全)在机器学习中,我们通常将原始数据按照比例分割为“测试集”和“训练集”,从 sklearn.model_selection 中调用train_test_split 函数简单用法如下:X_train,X_test, y_train, y_test =sklearn.model_selection.tra...
转载
243阅读
0评论
0点赞
发布博客于 2 年前

python机器学习基本概念快速入门

//2019.08.01机器学习基础入门1-21、半监督学习的数据特征在于其数据集一部分带有一定的"标记"和或者"答案",而另一部分数据没有特定的标记,而更常见的半监督学习数据集产生的原因是各种原因引起的数据缺失。2、半监督学习的数据集处理方式大多采用:先用无监督学习算法对数据进行相关的处理,再利用监督学习算法对其进行模型的训练和预测。3、增强学习:它是指根据周围的环境进行相应的行...
转载
12阅读
0评论
0点赞
发布博客于 2 年前

sklearn实现多分类逻辑回归

sklearn实现多分类逻辑回归#二分类逻辑回归算法改造适用于多分类问题1、对于逻辑回归算法主要是用回归的算法解决分类的问题,它只能解决二分类的问题,不过经过一定的改造便可以进行多分类问题,主要的改造方式有两大类:(1)OVR/A(One VS Rest/ALL)(2)OVO(One VS One)2、对于OVR的改造方式,主要是指将多个分类结果(假设为n)分成是其中一种分类结果...
转载
291阅读
0评论
1点赞
发布博客于 2 年前

k-近邻算法原理入门-机器学习

//2019.08.01下午机器学习算法1——k近邻算法1、k近邻算法是学习机器学习算法最为经典和简单的算法,它是机器学习算法入门最好的算法之一,可以非常好并且快速地理解机器学习的算法的框架与应用。2、kNN机器学习算法具有以下的特点:(1)思想极度简单(2)应用的数学知识非常少(3)解决相关问题的效果非常好(4)可以解释机器学习算法使用过程中的很多细节问题(5)更加完整地刻画机器学习应...
转载
14阅读
0评论
0点赞
发布博客于 2 年前

sklearn调用逻辑回归算法

1、逻辑回归算法即可以看做是回归算法,也可以看作是分类算法,通常用来解决分类问题,主要是二分类问题,对于多分类问题并不适合,也可以通过一定的技巧变形来间接解决。2、决策边界是指不同分类结果之间的边界线(或者边界实体),它具体的表现形式一定程度上说明了算法训练模型的过拟合程度,我们可以通过决策边界来调整算法的超参数。注解:左边逻辑回归拟合决策边界嘈杂冗余说明过拟合...
转载
89阅读
0评论
0点赞
发布博客于 2 年前

Qt中第一请求web api连接返回缓慢问题

项目中用到了QNetworkAccessManagerQNetworkRequest 调用web api.程序在有些机器上第一次请求webapi过好久才返回结果(一个很简单的web接口)。表现为win10机器请求很快返回,有些win7返回也很快,但有个测试同事机器win7系统第一次请求很慢。开始以为是QT问题(因为用QT用了不到一个月)。后来用C#用HttpWebRequest写了简单...
转载
307阅读
0评论
0点赞
发布博客于 2 年前

解决某些Win7中第一次调用webapi连接缓慢、超时等问题(转载)

转自:https://www.cnblogs.com/blosaa/p/3495949.html在使用HttpWebRequest的时候发现,第一次连接需要15S左右,我的系统是win7,很崩溃,除了我那个用户可以等待的了,但是第二次,就没有问题了,于是百度之......http://www.cnblogs.com/llcto/archive/2011/11/19/2255263...
转载
353阅读
0评论
0点赞
发布博客于 2 年前

OSG-VS2013-X64编译(转载)

一、安装(编译)工具:CMake工具 —— 下载地址:https://cmake.org/download/  例如:cmake-3.4.3-win32-x86.zip二、OSG编译的相关程序:(1)OSG源代码 —— 下载地址:http://www.openscenegraph.org/index.php/download-section/stable-releases...
转载
43阅读
0评论
0点赞
发布博客于 2 年前

C++矩阵库 Eigen 简介(转载)

转自https://www.cnblogs.com/rainbow70626/p/8819119.html最近需要用 C++ 做一些数值计算,之前一直采用Matlab 混合编程的方式处理矩阵运算,非常麻烦,直到发现了 Eigen 库,简直相见恨晚,好用哭了。Eigen是一个基于C++模板的线性代数库,直接将库下载后放在项目目录下,然后包含头文件就能使用,非常方便。此外,Eige...
转载
28阅读
0评论
0点赞
发布博客于 2 年前

Chilkat9.5.0.75(x86+x64)ActiveX+注册机

链接:https://pan.baidu.com/s/1GiUnlcRX1pLDiF6yVnBnVQ 密码:ivfv转载于:https://www.cnblogs.com/hhmm99/p/11383027.html
转载
619阅读
0评论
0点赞
发布博客于 2 年前

delphi使用Chilkat 组件和库从SFTP下载文件

官网地址:https://www.example-code.com/delphiDll/default.asp实例代码:(不包括全局解锁) 密码生成器:https://www.cnblogs.com/hhmm99/p/11383027.htmluses Winapi.Windows, Winapi.Messages, System.SysUtils, System...
转载
216阅读
0评论
0点赞
发布博客于 2 年前

Javascript获取元素的xpath

//获取xpathfunction readXPath(element) { if (element.id !== "") {//判断id属性,如果这个元素有id,则显 示//*[@id="xPath"] 形式内容 return '//*[@id=\"' + element.id + '\"]'; } //这里需要需要主要字符串转...
转载
374阅读
0评论
0点赞
发布博客于 2 年前

Python计算KDJ值

Python计算KDJ值,但计算的结果跟通达信软件有一定的差别。import talib as taimport tushare as tsimport pandas as pddw = ts.get_k_data("601069")print(dw)dw = dw[60:]dw.index = range(len(dw))dw['slowk'], d...
转载
833阅读
0评论
0点赞
发布博客于 2 年前

HashMap源码分析

一、要点1. 如何减少哈希碰撞  1. 将哈希桶长度设置为2的倍数,这样在计算下标时(n-1)& hash 的(n-1)二进制最后一位也会参与运算,  2. 当Map中元素增加时,势必会造成碰撞的增加,这时候通过扩容来,来减少碰撞2. 何时初始化HashMap  在put值时,初始化hashMap3. 哈希桶的寻址方法  计算下标的算法 (n-1)...
转载
33阅读
0评论
0点赞
发布博客于 2 年前

模板方法模式的理解和使用

一、是什么1. 定义: 在一个方法中定义一个算法的骨架,将一些步骤延迟到子类中实现2. 好处:  代码复用,对于某些算法的实现时,很有效,确定了整体的架子,让子类去实现具体的步骤二、示例1. 代码背景:制作茶的步骤是:1. 把水煮沸 2.用沸水浸泡茶叶3.把冲泡的倒进杯子4. 加柠檬制作咖啡的步骤:1. 把水煮沸 ...
转载
54阅读
0评论
0点赞
发布博客于 2 年前

IDEA远程仓库版本回滚

http://nullpointer.pw/IDEA%E8%BF%9C%E7%A8%8B%E4%BB%93%E5%BA%93%E7%89%88%E6%9C%AC%E5%9B%9E%E6%BB%9A.html转载于:https://www.cnblogs.com/milicool/p/11453532.html
转载
173阅读
0评论
0点赞
发布博客于 2 年前

工厂模式的理解和使用

一、是什么1. 定义  工厂方法模式:由子类决定要创建的具体类是哪一个  抽象工厂:允许客户创建对象的家族,而无需指定他们的具体类2. 理解  从定义中可以看出, 抽象工厂包含了工厂方法,区别是抽象工厂创建的是家族3. 好处:  封装具体对象的创建,促进松耦合4. 设计原则  依赖倒置原则--依赖抽象,不依赖具体类二、示例工厂方法1. ...
转载
12阅读
0评论
0点赞
发布博客于 2 年前

代理模式的理解和示例

一、是什么1. 定义:为另一个对象提供一个替身或占位符以控制对这个对象的访问 (控制访问)2. 分类:  远程代理: 有点类似dubbo,调用代理的方法,会被代理利用网络转发到远程执行,并把结果通过网络返回给代理,最后返回给客户  虚拟代理: 作为创建开销大对象的代表,一般等该对象创建成功后,在委托给改对象  安全代理: 控制访问权限  智能代理: 提供对目标对象...
转载
15阅读
0评论
0点赞
发布博客于 2 年前

迭代器模式的理解和示例

一、是什么1. 定义:在对象集合之间游走,而不暴露集合的实现二、示例代理背景:  1. 有汉堡包店和晚餐店的菜单, 假设汉堡包店的菜单是用List存放, 晚餐店是用数组存放的(用不同的存放方式,为了体现迭代器统一的处理方式)  2. 服务生要将两家店的菜单都打印出来  3. 这里先自己重写Iterator, 为了体现迭代器的设计模式,在实际使用中,可以直接循环...
转载
23阅读
0评论
0点赞
发布博客于 2 年前

命令模式的理解和示例

一、是什么?作用1. 命令模式 将“请求”封装成对象,以使用不同的请求队列或者日志来参数话其他对象,命令模式亦可以来支持撤销的操作2.将请求封装成命令对象,请求的具体执行由命令接收者执行;作用:  命令发送者与命令执行者解耦;  每一个命令都是一个操作3. 类图Invoke(调用者): 调用者负责执行命令Command(命令接口): 负责将操作封装成...
转载
30阅读
0评论
0点赞
发布博客于 2 年前

单例模式的理解和示例

一、是什么确保一个类只有一个实例,并提供一个全局访问点一般分类两大类: 饿汉模式、懒汉模式使用: 以前在线白鹭H5游戏时,因为有很多的场景类, 而每个场景类不需要创建很多遍, 所以使用单例模式二、示例1. 饿汉模式/** * 饿汉模式, 线程安全, 但默认就创建实例, 占用空间 */public class Singleton1 { pr...
转载
27阅读
0评论
0点赞
发布博客于 2 年前

与模式相处之整理

一、介绍策略模式封装可以互换的行为, 并使用委托来决定要使用哪一个命令模式封装请求成为对象模板方法由子类决定如何实现算法中的某一步组合模式客户可以用一致的方法对象集合和单个对象适配器封装对象,并提供不同的接口装饰器包装一个对象,以提供新的行为外观模式简化一群类的接口...
转载
30阅读
0评论
0点赞
发布博客于 2 年前

python爬虫-豆瓣电影的尝试

一、背景介绍1. 使用工具  Pycharm2. 安装的第三方库  requests、BeautifulSoup  2.1 如何安装第三方库  File => Settings => Project Interpreter => + 中搜索你需要的插件  3. 可掌握的小知识  1. 根据url 获取页面html内容  2....
转载
47阅读
0评论
0点赞
发布博客于 2 年前

python爬虫-爬取你想要的小姐姐

一、准备1. 原地址2. 检查html发现,网页是有规则的分页, 最大图片的class为pic-large二、代码 1 import requests 2 import os 3 from bs4 import BeautifulSoup 4 5 url = 'http://www.win4000.com/wallpaper_detail_...
转载
263阅读
0评论
0点赞
发布博客于 2 年前

适配器模式的理解和示例

一、是什么1. 定义:让原来不兼容的两个接口协同工作2. 分类: 类适配器、对象适配器、接口适配器3. 角色目标接口:Target,该角色把其他类转换为我们期望的接口被适配者: Adaptee 原有的接口,也是希望被改变的接口适配器: Adapter, 将被适配者和目标接口组合到一起的类4. 类图对象适配器,使用组合类适配器,在java中实...
转载
24阅读
0评论
0点赞
发布博客于 2 年前

知识点关注

基础篇1. JVM相关,JAVA里的垃圾回收有什么目的?什么时候会触发?(追问:频繁full GC问题排查思路,GVM调优)垃圾回收的目的,内存管理,释放无用的对象; 能够完成的描述一次垃圾回收的过程。(年轻代、老年代、永久代) Full gc 现象,分析定位,解决;2. 集合相关,HashMap实现原理?(追问:多线程环境如何使用Map) HashMap存储,碰撞,扩容...
转载
30阅读
0评论
0点赞
发布博客于 2 年前

状态模式的理解和示例

一、是什么1. 定义:封装了基于状态的行为,并使用委托在行为之间切换2. 好处: 通过将每个状态封装到类中,将以后需要做的任何改变局部化3. 缺点: 使用状态类通常会导致设计类的数量大量增加4. 类图如上,和策略模式的类图相同,目的不同,策略是为了封装互换的行为,用委托来解耦,状态模式的目的是将状态封装成类,用委托来切换状态二、示例场景:假设冲一杯咖啡的步骤...
转载
16阅读
0评论
0点赞
发布博客于 2 年前

外观模式理解和示例

一、是什么定义:简化一群类的接口,达到屏蔽代码的复杂度使用场景: 封装一系列复杂接口,以提供一个服务,简化接口二、示例现在模拟在家看漫威,哈哈哈复杂版:打开遥控器选择电影栏目选择钢铁侠打开电影使用外观模式,将负责封装后就变为:  1. 打开钢铁侠电影代码:/** * 遥控器类 */public class Rem...
转载
33阅读
0评论
0点赞
发布博客于 2 年前

离散数学

“离散数学”正在深刻地影响着我们的生活!你可能并不知道帝宫往事发布时间:18-12-1118:25历史达人,优质原创作者我们正处于人类史上最美好的时代,在这个伟大的时代里,数学再次进入高速发展的快车道。在过去的两百年,“微积分”为人类文明带来了翻天覆地的变化。而如今,“离散数学”己经取代了“微积分”的...
转载
109阅读
0评论
0点赞
发布博客于 2 年前

交易已无秘密 一个期货高手的终极感悟

交易已无秘密 一个期货高手的终极感悟评论邮件纠错2015-07-29 09:36:44来源:和讯网  编者按:本文转载自网络上一个期货高手的感悟。看似封贴之作。  交易已无秘密。就此离去。能看到此贴的人是缘份。  若干年后,诸君功成名就时,希望记得专一投机这个名字。  与有缘人结个善缘,永久关贴。  我一直都认为日K的中期...
转载
401阅读
0评论
0点赞
发布博客于 2 年前

http 初识

http协议基础物理层主要作用是定义物理设备如何传输数据数据链路层在通信的实体间建立数据链路连接网络层为数据在结点之间传输创建逻辑链路传输层:向用户提供可靠的端到端服务传输层向高层屏蔽了下层数据通信的细节应用层:为应用软件提供了很多服务构建于TCP协议之上,屏蔽网络传输相关细节HTTP/0.9 GET请求、服务器发送完毕,就关闭TCP连接HTTP/1.0 增加了很...
转载
30阅读
0评论
0点赞
发布博客于 2 年前

法线贴图

最近研究的是从已知顶点和法线的模型中,用代码生成法线贴图,这里记录一下资料。1.贴图的制作过程,仅需知道两种方式<1>用颜色贴图转法线贴图,灰度图。unity,ps中可以转<2>先制作一个高模一个低模,通过高模的烘焙到低模上就可以生成法线贴图。3dmax中这样操作2.顶点数据里的顶点坐标与纹理坐标顶点坐标应该是模型空间下的坐标,纹理坐标应该是u...
转载
76阅读
0评论
0点赞
发布博客于 2 年前

C++学习记录

1.C++中没有C#中所谓的引用类型和值类型,需要使用引用,或者指针操作对象,但是指针容易出错,为什么不用引用而用指针呢,下面给出总结<1>引用在声明时必须初始化,指针可以是空指针,引用定义后就不能在指向其他对象了 如果一个指针所指向的对象,需要用分支语句加以确定,或者在中途需要改变他所指的对象,那么在它初始化之后需要为他赋值,而引用只能在初始化时指定被引用...
转载
17阅读
0评论
0点赞
发布博客于 2 年前

C++配置坑-----openCv环境配置

一个配置成功的openCv环境应该是这样的然后先介绍下这个属性页的配置。1.可执行文件目录,他的说明是,生成vc++项目期间,搜索可执行文件时使用的路径,与环境变量path相对应,大概在path文件夹下搜索可执行文件吧,这个没验证2.包含目录,他的说明是,生成vc++项目期间,搜索包含文件时使用的路径,与环境变量INCLUDE相对应,对应一个Includ...
转载
347阅读
0评论
0点赞
发布博客于 2 年前

FBX SDK环境配置

参照这个https://blog.csdn.net/lilysara/article/details/53940353注意事项1. 选择lib文件夹的时候注意和电脑配置匹配不匹配的话会报这个错误。配置成功后可以引入fbxsdk头文件,并调试运行然后上面那个配置,在win7,vs2017下,解除上面的注释的话会报2019Link错误...
转载
634阅读
0评论
0点赞
发布博客于 2 年前

树莓派通过frp穿透内网

wai网访问内网web在树莓派机器上配置frpc.ini[web]type = http    #类型local_port = 80  #转发端口【服务端访问内网的80端口】custom_domains = www.poxiao666.cn  #该域名要解析到服务端,外部网络通过ssh 访问树莓派服务端配置[common]bind_...
转载
46阅读
0评论
0点赞
发布博客于 2 年前

树莓派自定义创建frp开机启动

# 需要先 cd frp 解压目录.# 复制文件cp frpc /usr/local/bin/frpcmkdir /etc/frpcp frpc.ini /etc/frp/frpc.ini# 编写 frp service 文件,以 centos7 为例,适用于 debianvim /usr/lib/systemd/system/frpc.service...
转载
366阅读
0评论
0点赞
发布博客于 2 年前

centos6.5创建开机自启

在/etc/rc.d/rc.local文件中添加要执行的命令转载于:https://www.cnblogs.com/pxfb/p/11296265.html
转载
23阅读
0评论
0点赞
发布博客于 2 年前

大数据学习之路之HBASE

Hadoop之HBASE一、HBASE简介HBase是一个开源的、分布式的,多版本的,面向列的,半结构化的NoSql数据库,提供高性能的随机读写结构化数据的能力。它可以直接使用本地文件系统,也可以使用Hadoop的HDFS文件存储系统。不过,为了提高数据的可靠性和系统的健壮性,并且发挥HBase处理大数据的能力,使用HDFS作为文件存储系统才更为稳妥。HBase存储的数据从逻辑上来...
转载
101阅读
0评论
0点赞
发布博客于 2 年前

大数据学习之路之Hadoop

Hadoop介绍一、简介Hadoop是一个开源的分布式计算平台,用于存储大数据,并使用MapReduce来处理。Hadoop擅长于存储各种格式的庞大的数据,任意的格式甚至非结构化的处理。两个核心:HDFS:Hadoop分布式文件系统(Hadoop Distributed File System),具有高容错性和伸缩性,使用java开发MapReduce:Google MapRe...
转载
10阅读
0评论
0点赞
发布博客于 2 年前

带符号的整数做减法

View Code #include<iostream>using namespace std;char a[1001] ;char x_a[1001] , y_b[1001] ;char xx[1001] , yy[1001];char x1[1001] , y1[1001];int Lx , Ly ;int sum[1001] ;int num ;int ...
转载
85阅读
0评论
0点赞
发布博客于 2 年前

探究Windows RT的系统内存占用

众所周知,Windows 8在推出之时有若干版本,其中就包括了针对ARM平台的Windows RT系统。ARM平台相比于PC平台就有些限制,这里就看看内存的占用量如何。我这里使用的是华硕TF600T的RT平板,虽然不是Surface RT,但是两者使用的都是类似的硬件配置,系统也都是Windows RT,所以内存的占用也同样有可参考性。首先我们来看一下系统开机时候的内存:...
转载
53阅读
0评论
0点赞
发布博客于 2 年前

笑话,难道懂礼貌就必须说谎吗

Plato 标签: 礼貌,说谎  妈妈:“你要哪一只香蕉,维克多?”  维克多:“我要那只最大的。”  妈妈:“维克多,你应该懂礼貌,要那只小的。”  维克多:“妈妈,难道懂礼貌就必须说谎吗?”转载于:https://www.cnblogs.com/JoinZhang/archive/2010/08/28/1810679.html...
转载
39阅读
0评论
0点赞
发布博客于 2 年前

mysql5.7 安装版安装

参考http://dev.mysql.com/doc/refman/5.7/en/installing.html下载mysq5.7的安装包http://dev.mysql.com/downloads/mysql/解压到某个指定为文件夹,解压完之后在其根目录底下新建一个my.ini(也可以直接复制原来默认的my-default.ini),然后添加内容,注意,里面的中文在实际中要...
转载
31阅读
0评论
0点赞
发布博客于 2 年前