- 博客(6)
- 收藏
- 关注
原创 机器学习在复杂网络分析中的应用
对症下药是在复杂网络分析中使用机器学习方法的最大优势。为什么要这样说呢?原因很简单,不同数据构使用不同的网络构造方式形成的网络往往具有不同的特性。简单而言,在网络中对重要性节点的描述就很不一致,常见的重要性衡量指标就有度、度中心性、介数中心性、K-shell指数、pageRank值等等。在交通网络中,度往往就能衡量一个节点(枢纽)的重要性,网页的重要性则是要根据邻居的重要性来更新当前节点重要性...
2019-01-28 18:36:23 3150 1
原创 深度学习笔记
深度学习笔记前言(废话)深度学习发展历程背景深度学习的发展历程(人工智能的发展历程)深度学习能和不能目前前沿研究前言(废话)作为一个深度学习的小白(其实小白都算不上,仅仅是任务需要利用TensorFlow写过一两个浅层的卷积神经网络而已)有幸的参加了CCF举办的深度学习前沿讨论班,整体感受是大家做的都很高大上,具体对一个小白抱着想学一点深度学习日常使用的小技巧的我而言,为期两天的讨论班学习让...
2019-01-28 17:20:48 559
原创 一维CNN+MLP
利用Sequential模型构造一个二层CNN+MLP的多分类任务。任务描述,有一个有向网络,现在需要对网络中的节点进行分类。这里节点的类别就是节点本身,对同一个节点进行多次随机游走得到不同的随机游走序列表示。通过构造的深度学习模型能正确分辨出属于同一节点的不同游走序列。1.数据加载+构建网络网络构建,读取一个邻接表文件构建有向图。class DiGraphs(object): ...
2018-08-09 18:23:50 5108
原创 PRML之线性回归(Linear Models for Regression)
啰嗦两句,PRML这本书是基于贝叶斯思想进行相关机器学习算法的推导和讲解。书上有详细的公司推导,故LZ不做公式方面的读书笔记记录,来讲讲算法递进的逻辑关系。在开始记录线性回归模型学习之前,容我们闭目独立思考两个问题:①什么是机器学习?②机器学习的本质问题是什么?这两个问题是伴随着我们机器学习生涯常常出现,There are a thousand Hamlets in a thousand...
2018-08-09 16:56:27 827
原创 简单上手Sequential模型
序贯模型式多个网络层的线性堆叠。 1. 通过向Sequential模型传递一个layer的list构造模型;from keras.models import Sequentialfrom keras.layers import Dense, Activation'''参数说明:Dense表示设置全连接层输入和输出,然后设置第一层中的激活函数为‘relu’;同理第二层的输入式第一...
2018-07-10 15:54:00 1471
原创 首触Keras
因为手上的一项任务需要使用当神经网络中的CNN模型,并对CNN根据任务进行一定的"改造"。故开始下学习深度学习相关知识。环境的搭建由于LZ使用的式Ubuntu系统,所以在配置好python环境之后只需要配置相关的深度学习框架(尽量保证python的版本是3,因为tensorflow和python3的适配更好);python环境配置相关方法可自行百度,非常简单。因为现目前常用的深度学习包以keras...
2018-07-10 10:51:55 220
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人