高阶奔驰定理
设 为
维空间中不在同一
维超直线上,但共
维超平面的点
为任意一点,则
与这
个点共超平面的充要条件是
存在不全为零的实数 ,有
可以证明,这n个系数的比值与 以及
有关,
。
当这个比例系数取1时,显然可以写成
因为余子式展开(这里推导就省略了),一般把这种形式写作
高阶奔驰定理
设 为
维空间中不在同一
维超直线上,但共
维超平面的点
为任意一点,则
与这
个点共超平面的充要条件是
存在不全为零的实数 ,有
可以证明,这n个系数的比值与 以及
有关,
。
当这个比例系数取1时,显然可以写成
因为余子式展开(这里推导就省略了),一般把这种形式写作