高阶奔驰定理的表示方法及其与向量共线定理的关系

本文探讨了在高维空间中,若点不共n维超直线且共n维超平面的条件,涉及系数比值的确定,以及当比例系数为1时的特殊情况,以余子式展开为工具进行推导。
摘要由CSDN通过智能技术生成

高阶奔驰定理

设 A_{1},A_{2},...A_{n} 为 n 维空间中不在同一 n-2 维超直线上,但共 n-1 维超平面的点

P 为任意一点,则 P 与这 n 个点共超平面的充要条件是

存在不全为零的实数 x_{1},x_{2},...,x_{n} ,有

x_{1}\overrightarrow{PA_{1}}+x_{2}\overrightarrow{PA_{2}}+...+x_{n}\overrightarrow{PA_{n}}=\overrightarrow{0}

可以证明,这n个系数的比值与 P 以及 A_{1},A_{2},...A_{n} 有关,

x_{1}:x_{2}:...:x_{n}=\begin{vmatrix} \overrightarrow{PA_{2}}, \overrightarrow{PA_{3}},... ,\overrightarrow{PA_{n}} \end{vmatrix}:

-\begin{vmatrix}\overrightarrow{PA_{1}}, \overrightarrow{PA_{3}}, \overrightarrow{PA_{4}},... ,\overrightarrow{PA_{n}} \end{vmatrix}:

more......

:(-1)^{n+1}\begin{vmatrix} \overrightarrow{PA_{1}}, \overrightarrow{PA_{2}},... ,\overrightarrow{PA_{n-1}} \end{vmatrix}  。

当这个比例系数取1时,显然可以写成

\begin{vmatrix}\overrightarrow{PA_{1}}, \overrightarrow{PA_{2}},... ,\overrightarrow{PA_{n}} \\ \overrightarrow{PA_{1}}, \overrightarrow{PA_{2}},... ,\overrightarrow{PA_{n}} \end{vmatrix} =\overrightarrow{0}

因为余子式展开(这里推导就省略了),一般把这种形式写作

det\begin{pmatrix} \overrightarrow{PA_{1}}&\overrightarrow{PA_{2}}&...&\overrightarrow{PA_{n}} \\ PA_{1x}& PA_{2x}&...& PA_{nx} \\ PA_{1y}& PA_{2y}&...& PA_{ny} \\ PA_{1z}& PA_{2z}&...& PA_{nz} \\... \end{pmatrix} =\overrightarrow{0}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值