题意:有N头牛,每只牛有一个测试值[S,E],如果对于牛i和牛j来说,它们的测验值满足下面的条件则证明牛i比牛j强壮:Si <=Sjand Ej <= Ei and Ei - Si > Ej - Sj。现在已知每一头牛的测验值,要求输出每头牛有几头牛比其强壮。
思路:将S从小到大排序,E从大到小排序,这样就保证第一个条件满足,线段树保存时与求逆序数的方法相同,求出比当前牛强壮的个数。
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
const int inf=0x3f3f3f3f;
const int maxn=100010;
int num[maxn*4],ans[maxn],t[maxn];
struct edge{
int x,y,pos;
bool operator<(const edge &b)const {
return x<b.x||(x==b.x&&y>b.y);
}
}num1[maxn];
void buildtree(int le,int ri,int node){
num[node]=0;
if(le==ri) return ;
int t=(le+ri)>>1;
buildtree(le,t,node<<1);
buildtree(t+1,ri,node<<1|1);
}
void update(int pos,int le,int ri,int node){
if(le==ri){
num[node]++;
return ;
}
int t=(le+ri)>>1;
if(pos<=t)
update(pos,le,t,node<<1);
else
update(pos,t+1,ri,node<<1|1);
num[node]=num[node<<1]+num[node<<1|1];
}
int query(int l,int r,int le,int ri,int node){
if(l<=le&&ri<=r) return num[node];
int t=(le+ri)>>1;
int ans=0;
if(l<=t) ans+=query(l,r,le,t,node<<1);
if(r>t) ans+=query(l,r,t+1,ri,node<<1|1);
return ans;
}
int main(){
int n;
while(scanf("%d",&n)!=-1){
if(n==0) break;
buildtree(0,maxn-1,1);
for(int i=0;i<n;i++){
scanf("%d%d",&num1[i].x,&num1[i].y);
num1[i].pos=i;
}
sort(num1,num1+n);
for(int i=0;i<n;i++){
if(i!=0&&num1[i].x==num1[i-1].x&&num1[i].y==num1[i-1].y) ans[num1[i].pos]=ans[num1[i-1].pos];
//如果和上一个牛一样的范围,则说明这两个牛一样强壮,直接相等
else ans[num1[i].pos]=query(num1[i].y,maxn-1,0,maxn-1,1);
update(num1[i].y,0,maxn-1,1);
}
for(int i=0;i<n;i++){
if(i==n-1) printf("%d\n",ans[i]);
else printf("%d ",ans[i]);
}
}
return 0;
}