题意:给一串数字序列,然后问你L到R中的两个数的最大公约数最大,若相等的两个数则是0
思路:又是一道需要离线处理的题目,昨天写的HDU 3333也是一道这样的题目,建议先写3333在写这个会有帮助,那么对于这个序列我的每一次提问L到R那么最大的是多少,我们可以这样考虑,这区间所有的数的因子的个数大于等于2就可以竞争这个最大的提问,然后选出最大的即可,那么对于R来说,R的所有因子上一次出现的位置是我们需要的,因为现在问到R的最大值,那么离R最近的所有因子更新后,更往前面的查询是不影响这个最大值的,这也是为什么离线来处理,到目前的R的所有区间都不会影响这个规律,所以这样处理就可以
#include <math.h>
#include <vector>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int inf=0x3f3f3f3f;
const ll INF=0x3f3f3f3f3f3f3f3fll;
const int maxn=50010;
int num[maxn<<2];
vector<int>G[maxn];
void update(int pos,int add,int le,int ri,int node){
if(le==ri){
num[node]=max(add,num[node]);
return ;
}
int t=(le+ri)>>1;
if(pos<=t) update(pos,add,le,t,node<<1);
else update(pos,add,t+1,ri,node<<1|1);
num[node]=max(num[node<<1],num[node<<1|1]);
}
int query(int l,int r,int le,int ri,int node){
if(l<=le&&ri<=r) return num[node];
int t=(le+ri)>>1,ans=0;
if(l<=t) ans=max(ans,query(l,r,le,t,node<<1));
if(r>t) ans=max(ans,query(l,r,t+1,ri,node<<1|1));
return ans;
}
int A[maxn],ans[maxn],pre[maxn],vis[maxn];
struct edge{
int num1,num2,pos;
}id[maxn];
bool cmp(const edge &a,const edge &b){
return a.num2<b.num2;
}
void init(){
for(int i=0;i<maxn;i++) G[i].clear();
for(int i=1;i<=50000;i++){
for(int j=1;j<=(int)sqrt(i);j++){
if(i%j==0){
G[i].push_back(j);
if(j!=i/j) G[i].push_back(i/j);
}
}
sort(G[i].begin(),G[i].end());
}
}
int main(){
int T,n,m;
init();
scanf("%d",&T);
while(T--){
scanf("%d",&n);
memset(num,0,sizeof(num));
memset(vis,0,sizeof(vis));
for(int i=0;i<n;i++) scanf("%d",&A[i]);
scanf("%d",&m);
for(int i=0;i<m;i++){
scanf("%d%d",&id[i].num1,&id[i].num2);
id[i].pos=i;
}
sort(id,id+m,cmp);
for(int i=0,j=0;i<n;i++){
for(unsigned int l=0;l<G[A[i]].size();l++){
int t=G[A[i]][l];
if(vis[t]){
update(pre[t],t,1,n,1);
pre[t]=i+1;
}else{
vis[t]=1;
pre[t]=i+1;
}
}
for(;j<m;j++){
if(i+1!=id[j].num2) break;
if(id[j].num1==id[j].num2) ans[id[j].pos]=0;
else ans[id[j].pos]=query(id[j].num1,id[j].num2,1,n,1);
}
}
for(int i=0;i<m;i++) printf("%d\n",ans[i]);
}
return 0;
}