系统程序文件列表
项目功能:资讯类型,用户,非遗资讯,地域
开题报告内容
基于SpringBoot的非遗数字化平台开题报告
一、选题背景与意义
(一)选题背景
- 非遗保护现状
- 我国现有国家级非遗项目1557项,但传承人老龄化严重(平均65岁+),部分技艺面临“人亡艺绝”风险。
- 传统保护方式依赖口传心授与纸质档案,存在信息碎片化、传播渠道窄、年轻群体参与度低等问题。
- 数字化转型机遇
- 政策支持:《关于进一步加强非物质文化遗产保护工作的意见》明确要求“推进数字化保护”。
- 技术赋能:5G+VR/AR、区块链确权、AI智能修复等技术为非遗活态传承提供新路径。
(二)研究意义
- 文化价值
- 构建非遗“数字基因库”,实现技艺、口述史、器物等全要素数字化存证。
- 通过“数字孪生”技术还原古法工艺流程(如景德镇制瓷72道工序动态演示)。
- 社会价值
- 开发“非遗+教育”模块,支持中小学美育课程接入,推动传统文化进校园。
- 搭建“非遗电商”平台,帮助传承人对接市场(目标转化率提升40%)。
- 技术价值
- 验证SpringBoot在文化遗产大数据场景下的性能表现(支持千万级图片/视频存储)。
- 实践区块链在非遗版权保护中的应用(存证上链时间≤3秒)。
二、系统需求分析
(一)用户功能需求
角色 | 核心功能 | 技术指标 |
---|---|---|
普通用户 | 非遗3D全景浏览、AR虚拟体验(如试穿汉服)、非遗课程学习、文创产品购买 | 3D模型加载时间≤2秒,AR识别准确率≥95%,课程播放卡顿率≤0.5% |
传承人 | 作品数字存证(区块链)、技艺教学直播、订单管理、粉丝社群运营 | 直播延迟≤500ms,存证上链并发≥1000TPS,消息推送到达率≥99% |
管理员 | 非遗数据审核、版权纠纷处理、平台运营监控、数据可视化分析 | 审核响应时间≤10分钟,异常行为检测准确率≥85%,支持百万级日志分析 |
(二)非遗专项需求
- 数字化存证
- 支持高清图片(4K)、3D扫描数据(OBJ/GLB格式)、口述史音频(WAV/FLAC)存储。
- 集成区块链存证接口(如FISCO BCOS),实现作品创作时间、传承人身份、工艺步骤等核心数据上链。
- 活态传承
- AR虚拟体验:通过WebXR技术实现用户与虚拟非遗场景交互(如模拟古法造纸流程)。
- AI智能修复:对老旧影像(如皮影戏录像)进行超分辨率重建(4K修复耗时≤5分钟/帧)。
- 版权保护
- 数字水印:采用LSB算法对图片/视频添加隐形标识,支持侵权溯源。
- 内容过滤:基于NLP的敏感词检测(方言识别)与图像哈希比对(pHash算法)。
三、技术选型与架构设计
(一)技术选型
层级 | 技术栈 | 优势说明 |
---|---|---|
后端框架 | SpringBoot 3.2 + Spring Security 6.2 + MyBatis-Plus 3.6 | 支持RBAC权限模型,集成OAuth2.0统一认证,提供MyBatis动态SQL增强 |
前端框架 | Three.js(3D渲染)+ Vue 3.4(组合式API)+ Vite 5.0 | 轻量化3D模型加载,组件复用率提升50%,热更新速度提升3倍 |
数据库 | MySQL 8.0(主从复制)+ MinIO(对象存储)+ Neo4j(知识图谱) | 结构化数据存储、非结构化文件管理、非遗关联关系挖掘 |
中间件 | RabbitMQ 3.12(延迟队列)+ Redis 7.2(集群模式)+ FISCO BCOS(联盟链) | 支持异步通知、分布式锁、智能合约存证 |
AI技术 | PaddleGAN(图像修复)+ Whisper(方言转文字)+ MILVUS(向量检索) | 开源模型本地化部署,支持非遗影像修复、方言语音识别、相似工艺检索 |
(二)架构设计
- 分层架构
- 接入层:Nginx反向代理 + Kong Gateway(Lua插件实现流量染色)
- 业务层:DDD领域驱动设计,分模块部署(非遗存证/版权保护/电商交易)
- 数据层:CQRS模式,写模型(MySQL)+读模型(Elasticsearch)+知识图谱(Neo4j)
- 部署架构
- 容器化:Docker 26.0 + Kubernetes 1.32(支持GPU节点调度)
- 监控:Prometheus 2.49 + Grafana 10.5 + ELK 8.12(日志分析+异常检测)
- 灾备:跨云双活架构(阿里云+华为云),RTO≤30分钟,RPO≤1分钟
四、核心功能模块设计
(一)非遗存证模块
- 区块链存证
- 基于FISCO BCOS联盟链的智能合约开发,实现“创作即存证”。
- 存证内容包括:传承人身份、工艺步骤、作品图片、创作时间戳(支持UTC时间上链)。
- 3D数字化
- 使用Kinect Azure进行动作捕捉(如京剧武生招式),生成骨骼动画数据(FBX格式)。
- 集成Blender API实现自动化3D建模,支持模型轻量化处理(Draco压缩)。
(二)活态传承模块
- AR虚拟体验
- 基于8th Wall WebAR引擎,开发非遗场景交互(如用户可通过手机扫描实物触发虚拟动画)。
- 支持手势识别(MediaPipe)与空间定位(ARCore/ARKit)。
- AI智能修复
- 使用PaddleGAN的Real-ESRGAN模型对老旧影像进行4K修复。
- 集成Whisper模型实现方言语音转文字(支持粤语、闽南语等10种方言)。
(三)版权保护模块
- 数字水印
- 采用LSB算法对图片/视频添加隐形标识,支持:
- 盲检测(无需原始载体)
- 鲁棒性测试(JPEG压缩/裁剪攻击后仍可识别)
- 采用LSB算法对图片/视频添加隐形标识,支持:
- 内容比对
- 使用MILVUS向量数据库存储非遗作品特征向量(基于ResNet50提取)。
- 支持相似度检索(余弦相似度阈值可调,默认0.85)。
五、数据库设计
(一)核心表设计
-
非遗项目表(intangible_heritage)
sql
CREATE TABLE `intangible_heritage` (
`id` BIGINT PRIMARY KEY AUTO_INCREMENT,
`name` VARCHAR(100) NOT NULL COMMENT '非遗项目名称',
`category` TINYINT NOT NULL COMMENT '1-传统技艺 2-民俗 3-传统戏剧...',
`region` VARCHAR(50) COMMENT '所属地区(如苏州)',
`level` TINYINT DEFAULT 1 COMMENT '1-国家级 2-省级 3-市级',
`blockchain_tx_hash` VARCHAR(128) COMMENT '区块链存证交易哈希',
`status` TINYINT DEFAULT 1 COMMENT '0-下架 1-审核中 2-已上架',
INDEX `idx_category_status` (`category`, `status`) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci;
-
传承人表(inheritors)
sql
CREATE TABLE `inheritors` (
`id` BIGINT PRIMARY KEY AUTO_INCREMENT,
`name` VARCHAR(50) NOT NULL,
`gender` TINYINT DEFAULT 1 COMMENT '1-男 2-女',
`age` INT,
`skill_level` VARCHAR(50) COMMENT '国家级/省级传承人等',
`contact_phone` VARCHAR(20) UNIQUE,
`id_card` VARCHAR(30) COMMENT 'SM4加密存储',
`blockchain_address` VARCHAR(64) COMMENT '区块链钱包地址',
INDEX `idx_skill_level` (`skill_level`) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci;
-
数字资产表(digital_assets)
sql
CREATE TABLE `digital_assets` (
`id` BIGINT PRIMARY KEY AUTO_INCREMENT,
`heritage_id` BIGINT NOT NULL COMMENT 'FK:intangible_heritage.id',
`asset_type` TINYINT NOT NULL COMMENT '1-图片 2-视频 3-3D模型 4-音频',
`file_path` VARCHAR(255) NOT NULL COMMENT 'MinIO对象存储路径',
`watermark_status` TINYINT DEFAULT 0 COMMENT '0-未加水印 1-已加水印',
`blockchain_tx_hash` VARCHAR(128) COMMENT '区块链存证交易哈希',
INDEX `idx_heritage_asset_type` (`heritage_id`, `asset_type`) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci;
(二)性能优化策略
- 读写分离
- 主库负责写操作,从库通过Binlog同步数据。
- 强制一致性场景使用Seata AT模式。
- 缓存策略
- 热点数据:Redis Cluster(多级缓存,TTL动态调整)。
- 大key处理:Hash分片(如非遗项目关联的3D模型列表)。
- 查询优化
- 慢查询:Percona PMM监控,SQL优化建议。
- 复杂查询:预计算(Apache Druid)或知识图谱(Neo4j)。
六、风险评估与应对措施
(一)技术风险
风险项 | 应对措施 |
---|---|
3D模型加载卡顿 | 采用LOD(Level of Detail)技术,根据设备性能动态调整模型精度。 |
AI修复效果不佳 | 建立人工审核机制,对AI修复结果进行二次校验。 |
区块链性能瓶颈 | 使用分层架构(主链+侧链),将非核心数据存证至侧链。 |
(二)运营风险
风险项 | 应对措施 |
---|---|
用户参与度低 | 设计“非遗打卡”活动,用户上传体验视频可兑换文创周边。 |
传承人操作困难 | 开发“一键存证”工具,支持手机端扫码上传作品。 |
内容侵权频发 | 建立“AI初筛+人工复审+用户举报”三级审核机制,违规内容处理时间≤10分钟。 |
(三)合规风险
风险项 | 应对措施 |
---|---|
用户隐私泄露 | 通过ISO 27701认证,数据加密存储(国密SM4),定期进行渗透测试。 |
非遗内容敏感 | 建立内容黑名单,接入网信办敏感词库,支持方言敏感词识别。 |
跨境数据传输 | 部署海外节点(如AWS新加坡),符合GDPR要求,数据跨境传输通过安全评估。 |
进度安排:
1、2024.12.20-2025.1.1:选题
2、2025.1.2-2025.1.5:收集相关资料,完成任务书并提交
3、2025.1.10-2025.1.20:设置数据库。
4、2025.2.20-2025.3.10:查阅相关资料,完成开题报告并提交
5、2025.3.11-2025.3.30:设置相关功能
6、2025.3.30-2025.4.5: 测试优化
7、2025.4.5-2025.5.1:完成并提交中期检查
8、2025.4.15-2025.5.1:完成整合并根据指导老师的意见进行完善
9、2025.5.2-2025.5.20:撰写毕业设计论文,制作ppt,准备答辩事宜
参考文献:
[1] 陈佳莹.基于“美团·点评”生鲜电商项目产品商业设计研究[D].北京.北京邮电大学,2018:51
[2] 曾燕.吴雪枫.康俊卿.陈卓然.电商平台与其入驻商家合作发放优惠券的最优策略及效[J/OL].1.中山大学岭南学院2.帝国理工学院,2022:37
[3] 程传旭.乐万德.基于特征提取和机器学习的电商数据可视化分析系统设计[J].西安.西安航空学院计算机学院,2022(11):146-150.
[4] 杜亚敏.程广华.袁媛.基于区块链技术的跨境电商第三方信用评价系统研究[J].安徽.淮南师范学院经济与管理学院,2022,24(06):64-69.
[5] 陆莹.廖美红.基于知识图谱的电商商品信息采集系统的设计与实现[J]广西.广西工商职业技术学院,2022,(30):12-15.
[6] 殷常涛.王一凡.基于用户行为的个性化电商信息推送系统设计[J]郑州1.郑州西亚斯学院就业创业处2.郑州城市职业学院,2022,34(18):106-108.
[7] 林春兰.智能机器人系统在陶瓷电商行业中的应用研究[J].福建.泉州工艺美术职业学院设计艺术系,2022,32(08):90-92
[8] 杨国强.基于Flink电商实时数据仓库系统的设计与实现[D].上海.华东师范大学,2022:92
[9] 沈燕.基于LMBP算法的跨境电商供应链绩效评价及提升策略[D].江苏.江苏海洋大学,2022:91
[10]吴越.基于DEA-Malquist指数的跨境电商上市公司经营效率分析[D].江西.景德镇陶瓷大学,2022:68
以上是开题是根据本选题撰写,是项目程序开发之前开题报告内容,后期程序可能存在大改动。最终成品以下面运行环境+技术栈+界面为准,可以酌情参考使用开题的内容。要源码请在文末进行获取!!
系统技术栈:
前端技术栈
Vue.js 是一个流行的JavaScript框架,广泛应用于构建用户界面。结合Spring Boot,可以实现前后端分离的架构。
Element UI是一个基于Vue.js 的UI组件库,提供了丰富的UI元素和组件,可以帮助开发者快速搭建美观的前端界面
这些是最基本的前端技术,是所有前端开发的基础。掌握这些技术对于理解更高级的前端框架和工具非常重要
后端技术栈
核心容器:Spring Boot 提供了一个全面的核心容器,用于管理应用程序中的对象和依赖关系
Web:Spring Boot 内置了多个 Web 框架(如 Tomcat、Jetty 或 Undertow),使得创建 Web 应用变得非常简单
数据访问:Spring Boot 支持多种数据库连接池和ORM框架(如 MyBatis、JPA),简化了数据访问层的开发
开发工具
IntelliJ IDEA:这是一款功能强大的 Java IDE,特别适合开发 Spring Boot 项目。它提供了丰富的插件和功能来增强开发体验
Visual Studio Code:这是一个轻量级但功能强大的跨平台 IDE,提供对 Java 和 Spring Boot 开发的良好支持
开发流程:
使用Maven创建一个SpringBoot项目。这可以通过IDE(如IntelliJ IDEA或Eclipse)来完成,选择相应的模板即可
在项目的pom.xml 文件中添加SpringBoot相关的依赖,例如spring-boot-starter-web等
设置项目的启动类,通常命名为Application.java 或类似的名称,并使用@SpringBootApplication注解来标注
配置核心的SpringBoot配置文件,如application.properties 或application.yml ,用于定义数据库连接、缓存策略等
使用者指南
使用 Maven 或 Gradle 创建一个新的工程,并引入 Spring Boot 相关的依赖
在src/main/java 目录下创建一个主类,并使用 @SpringBootApplication 注解标注该类。这个注解会启用 Spring Boot 的自动配置功能
主类中通常包含一个 main 方法,用于启动 Spring Boot 应用
- Spring Boot 提供了丰富的自动配置机制,可以根据项目中的配置文件或外部属性自动配置应用程序。
- 自动配置原理是通过扫描特定的目录和类路径,寻找符合条件的组件并进行配置
运行应用:
- 通过命令行进入 src/main/java 目录,运行主程序类中的 main 方法即可启动应用。
- 默认情况下,Spring Boot 应用会使用嵌入式的 Tomcat、Jetty 或 Netty 容器运行