系统程序文件列表
项目功能:用户,个人食谱,特殊食谱,饮食类型,运动打卡,饮食登记
开题报告内容
SpringBoot计算机毕业设计:高校女生的饮食营养管理系统开题报告
一、选题背景与意义
- 现实需求
- 健康痛点:高校女生群体因学业压力、不规律作息、外卖依赖等因素,普遍存在营养失衡问题(如贫血、维生素缺乏、肥胖率上升)。调查显示,65%的女生未达到每日膳食纤维推荐摄入量,42%存在经期饮食管理缺失。
- 管理空白:现有校园健康管理平台功能泛化,缺乏针对女性生理周期、体质特征(如体寒、易水肿)的个性化饮食建议,且未整合食堂菜品数据与营养分析。
- 政策导向:教育部《“健康中国2030”规划纲要》明确要求高校加强学生营养健康教育,推动“智慧食堂”与健康管理平台融合。
- 研究价值
- 技术价值:基于SpringBoot+AI算法,构建“营养评估-膳食推荐-行为干预”闭环系统,填补高校女性健康管理领域的技术空白。
- 健康价值:通过动态营养监测与个性化食谱生成,帮助用户改善贫血、经前综合征(PMS)等健康问题,降低慢性病风险。
- 社会价值:推动高校健康管理从“事后治疗”转向“事前预防”,助力“健康校园”建设。
二、国内外研究现状
- 国内研究进展
- 校园健康平台:部分高校上线“健康打卡”APP,但功能集中于运动步数统计,缺乏饮食营养深度分析。
- 智能推荐系统:部分企业(如薄荷健康)推出女性营养管理工具,但未与高校食堂数据打通,无法实现“线上推荐+线下就餐”闭环。
- 国外研究动态
- 个性化营养方案:美国“Noom”平台基于认知行为疗法(CBT)设计饮食计划,但未针对亚洲女性体质优化算法。
- 生理周期适配:韩国“Luna”应用结合女性月经周期动态调整营养方案,但依赖用户手动输入数据,自动化程度低。
三、研究内容与技术路线
- 核心功能模块
- 用户健康画像:
- 基础信息:身高、体重、BMI、体脂率(支持体脂秤数据同步)。
- 生理周期:记录经期/排卵期,动态调整营养需求(如经期增加铁元素摄入)。
- 健康目标:支持“减脂塑形”“增肌”“改善贫血”等多目标选择。
- 智能营养评估:
- 食堂菜品数据库:对接高校食堂系统,录入菜品名称、热量、宏量营养素(蛋白质/脂肪/碳水)、微量营养素(铁/钙/维生素)。
- 饮食日志分析:通过拍照识别(OCR)或手动录入,自动计算每日营养摄入量,生成超标/不足预警(如钠摄入超标20%)。
- 个性化食谱推荐:
- 基于用户画像与食堂菜品库,采用协同过滤算法+营养学规则引擎,生成“一周推荐菜单”(如针对体寒体质推荐红枣桂圆粥)。
- 支持过敏原排除(如乳制品、麸质)与饮食偏好设置(素食/低糖)。
- 健康干预与社区:
- 经期关怀:推送补血食谱、缓解痛经的瑜伽教程。
- 社交激励:支持组队打卡、健康排行榜,积分可兑换食堂优惠券。
- 用户健康画像:
- 技术架构
- 后端:SpringBoot + MyBatis-Plus + MySQL(用户数据)+ MongoDB(菜品图片/日志),采用Redis缓存高频查询(如食堂实时菜品)。
- 前端:Vue.js + Ant Design Vue,适配PC端(管理后台)与移动端(微信小程序)。
- AI算法:基于TensorFlow的轻量化营养推荐模型,部署于Nvidia Jetson Nano边缘计算设备(可选),降低服务器压力。
- 数据安全:采用国密SM4算法加密存储敏感数据(如生理周期),符合《个人信息保护法》要求。
四、创新点与难点
- 创新点
- 生理周期动态适配:结合月经周期阶段(卵泡期/黄体期)自动调整营养方案,例如黄体期增加维生素B6摄入以缓解PMS。
- 食堂-系统深度联动:通过API接口实时同步食堂菜品数据,支持“扫码点餐-营养分析-健康评分”全流程。
- AI营养师辅助决策:集成医学营养学知识图谱,对用户饮食日志进行语义分析,自动识别不良习惯(如连续3天未摄入绿叶菜)。
- 技术难点
- 菜品营养数据标准化:需解决食堂菜品名称不统一(如“宫保鸡丁”与“宫爆鸡丁”)问题,采用NLP文本相似度匹配算法纠错。
- 多模态数据融合:整合用户健康数据、食堂菜品数据、运动数据(可选接入手环),构建多维度营养评估模型。
进度安排:
起止时间 | 主要内容 |
2024.12.10—2024.12.18 | 完成论文命题及选题工作 |
2024.12.19—2025.01.31 | 完成任务书撰写工作 |
2025.02.01—2025.02.21 | 完成开题报告写作修改与答辩 |
2025.02.23—2025.03.25 | 进行中期质量检查 |
2025.03.29—2025.04.20 | 根据大纲撰写论文初稿 |
2025.04.29—2025.05.01 | 修改论文,检测通过,论文定稿 |
2025.05.06—2025.05.10 | 认真准备并参加论文答辩 |
2025.06.01—2025.06.17 | 根据答辩修改论文,完成论文归档 |
参考文献:
- Zhou Q, Liao F, Ge L, et al. Personalized Preference Collaborative Filtering: Job Recommendation for Graduates[C]// 2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). IEEE, 2019.
- Roy P K, Chowdhary S S , Bhatia R . A Machine Learning approach for automation of Resume Recommendation system[J]. Procedia Computer Science, 2020, 167:2318-2327.
- 李宝深. 基于大数据的综合求职系统的设计与实现[D]. 华中科技大学.
- 姚建斌, 赵龙伟, 李海瑞. 一种可解释的混合型就业推荐算法[J]. 信息系统工程, 2019(6):3.
- 陆佳雯, 武频, 雷志丹,等. 基于广义Choquet积分的职位推荐算法[J]. 计算机工程与设计, 2021.
- 温晓宇. 基于Hadoop平台的岗位推荐系统的设计与实现[J]. 科技资讯, 2022(013):020.
- Yadalam T V, Gowda V M, Kumar V S, et al. Career Recommendation Systems using Content based Filtering[C]// 2020 5th International Conference on Communication and Electronics Systems (ICCES). 2020.
- Brijmohan Daga; Juhi Checker; Anne Rajan; Sayali Deo; "Computer Science Career Recommendation System Using Artificial Neural Network", INTERNATIONAL JOURNAL OF COMPUTER TRENDS AND TECHNOLOGY, 2020.
- Dhar J, Jodder A K . An Effective Recommendation System to Forecast the Best Educational Program Using Machine Learning Classification Algorithms[J]. Ingénierie des Systèmes D Information, 2020, 25(5):559-568.
- Wang C, Zhu H, Zhu C , et al. Personalized Employee Training Course Recommendation with Career Development Awareness[C]// WWW '20: The Web Conference 2020. 2020.
- Feng Y, Huang W . A Recommendation Model for College Career Entrepreneurship Projects Based on Deep Learning[J]. Wireless Communications and Mobile Computing, 2021.
- Guo P, Xiao K, Ye Z, et al. Intelligent career planning via stochastic subsampling reinforcement learning[J]. Scientific Reports.
- 李中旗. 基于内容推荐的企业招聘系统的设计与实现[D]. 河南大学.
- 张瑜. 企业招聘中双向推荐方法的应用研究[D]. 吉林大学, 2019.
- 刘飘, 程栋桧, 高琪琪,等. 基于大数据岗位分析推荐系统[J]. 智能城市, 2021, 7(16):2.
以上是开题是根据本选题撰写,是项目程序开发之前开题报告内容,后期程序可能存在大改动。最终成品以下面运行环境+技术栈+界面为准,可以酌情参考使用开题的内容。要源码请在文末进行获取!!
系统技术栈:
前端技术栈
Bootstrap 是一个流行的前端框架,提供了丰富的CSS和JavaScript组件,用于快速构建响应式网页设计。在Spring Boot项目中,Bootstrap通常与Thymeleaf或Vue.js等前端框架结合使用,以提升页面的美观性和用户体验
后端技术栈
Spring Boot与缓存集成:支持多种缓存解决方案,如Ehcache、Redis等,提升系统性能。
Spring Boot与邮件服务集成:提供了发送邮件的功能,支持文本、HTML、附件等多种格式。
Spring Boot与定时任务集成:支持Scheduled注解,用于定时执行任务
开发工具
IntelliJ IDEA:这是一款功能强大的 Java IDE,特别适合开发 Spring Boot 项目。它提供了丰富的插件和功能来增强开发体验
Visual Studio Code:这是一个轻量级但功能强大的跨平台 IDE,提供对 Java 和 Spring Boot 开发的良好支持
开发流程:
- 创建项目的基本结构,通常包括 src/main/java 和 src/main/resources 目录。src/main/java 目录下存放 Java 源代码,包括主程序类、控制器、服务层、实体类等。
- 编写主程序类,通常使用 @SpringBootApplication 注解标记,这是 Spring Boot 应用程序的入口点。
- 编写控制器类,使用 @RestController 或 @Controller 注解,处理 HTTP 请求。
- 编写服务层和数据访问层代码,使用 @Service 和 @Repository 注解标记相应的类
使用者指南
- 开箱即用:Spring Boot 提供了各种默认配置来简化项目配置,开发者只需进行少量的自定义配置即可快速启动项目。
- 内嵌式容器:Spring Boot 内置了 Tomcat、Jetty 等服务器,无需部署 WAR 文件,可以直接运行 JAR 文件。
- 自动化配置:Spring Boot 自动配置 Spring 和第三方库,减少了手动配置的工作量。
- 依赖管理:Spring Boot 的每个版本都提供了它支持的依赖项的精选列表,开发者无需在构建配置中为这些依赖项指定版本。