191028-树链剖分

191028-树链剖分

定义

指一种对树进行划分的算法,它先通过轻重边剖分将树分为多条链,保证每个点属于且只属于一条链,然后再通过数据结构(树状数组、BST、SPLAY、线段树等)来维护每一条链。

那么什么是轻重边呢?
很简单,来看下面一张图:
树链剖分-例图
在轻重链剖分中,每个非叶节点有且仅有一个重儿子,其余子节点为轻儿子。轻重儿子划分的依据是子树大小,对于每个非叶节点, 其子树size最大的子节点成为它的重儿子,其余节点成为它的轻儿子。
那么上图中红边即中边,黑边即轻边。

性质

性质
(说明:重链可以是一条边,一条链,也可以是一个点)

应用

1,求LCA

代码如下
#include<bits/stdc++.h>
#define M 500006 
using namespace std;
int first[M],to[M*2],nxt[M*2],f[M],dep[M],n,q,root,tot,size[M],num[M],top[M],idx[M],cnt,son[M];
void add(int x,int y)
{
	nxt[++tot]=first[x];
	first[x]=tot;
	to[tot]=y;
}
void dfs1(int u,int fa)
{
	dep[u]=dep[fa]+1;//深度
	size[u]=1;//子树大小
	f[u]=fa;//父亲
	for(int i=first[u];i;i=nxt[i])
	{
		int v=to[i];
		if(v==fa) continue;
		dfs1(v,u);
		size[u]+=size[v];
		if(size[v]>size[son[u]]) son[u]=v;//更新重儿子
	}
}
void dfs2(int u,int tp)
{
	top[u]=tp;//该点所在重链编号
	num[u]=++cnt;//该点的dfs序
	if(son[u]) dfs2(son[u],tp);//先遍历重儿子
	for(int i=first[u];i;i=nxt[i])
	{
		int v=to[i];
		if(!num[v]) dfs2(v,v);
	}
}
int lca(int u,int v)
{
	while(top[u]!=top[v])//如果两个点不在一条重链上
	{
		if(dep[top[u]]<dep[top[v]]) swap(u,v);//top值更深的点跳
		u=f[top[u]];
	}
	return dep[u]<dep[v]?u:v;//最后还要判断一下深度
}
int main()
{
	int x,y;
	scanf("%d%d%d",&n,&q,&root);
	for(int i=1;i<=n-1;i++)
	{
		scanf("%d%d",&x,&y);
		add(x,y);
		add(y,x); 
	}
	dfs1(root,0);
	dfs2(root,root);
	for(int i=1;i<=q;i++)
	{
		scanf("%d%d",&x,&y);
		printf("%d\n",lca(x,y));
	}
	return 0;
}

2,路径信息维护

3,子树信息维护

例题

T1 树链剖分板子

解析

由题意,有四种操作,两种是对链操作,另外两种对子树操作
1,对链的操作
可以把链拆分成一些重链集合(即点+边+链),因为每次先遍历的重儿子,所以一条重链上的dfs序一定是连续的,因此直接在线段树进行维护即可
2,对子树的操作
子树就更为简单了,因为一棵子树的dfs序一定也是连续的即 n u m [ x ] num[x] num[x]~ n u m [ x ] + s i z e [ x ] − 1 num[x]+size[x]-1 num[x]+size[x]1,直接线段树维护即可

代码
#include<bits/stdc++.h>
#define int long long
#define M 200006
using namespace std;
int nxt[M*2],to[M*2],first[M],tot,f[M],size[M],son[M],dep[M],n,m,mod,rt,num[M],idx[M],top[M],cnt,a[M],vis;
struct node
{
	int l,r,sum,add;
}tree[4*M];
int read()
{
	int f=1,re=0;
	char ch;
	for(ch=getchar();!isdigit(ch)&&ch!='-';ch=getchar());
	if(ch=='-')
	{
		f=-1;
		ch=getchar();
	}
	for(;isdigit(ch);ch=getchar())
		re=(re<<3)+(re<<1)+ch-'0';
	return re*f; 
}
void add1(int x,int y)
{
	nxt[++tot]=first[x];
	first[x]=tot;
	to[tot]=y;
}
void dfs1(int u,int fa)
{
	dep[u]=dep[fa]+1;
	size[u]=1;
	f[u]=fa;
	for(int i=first[u];i;i=nxt[i])
	{
		int v=to[i];
		if(v==fa) continue;
		dfs1(v,u);
		size[u]+=size[v];
		if(size[v]>size[son[u]]) son[u]=v;
	}
}
void dfs2(int u,int tp)
{
	top[u]=tp;
	num[u]=++cnt;
	idx[num[u]]=u;
	if(son[u]) dfs2(son[u],tp);
	for(int i=first[u];i;i=nxt[i])
	{
		int v=to[i];
		if(!num[v]) dfs2(v,v);
	}
}
void build(int k,int l,int r)
{
	tree[k].l=l;
	tree[k].r=r;
	if(l==r)
	{
		tree[k].sum=a[idx[l]];
		return;
	}
	int mid=(l+r)>>1;
	build(k<<1,l,mid);
	build(k<<1|1,mid+1,r);
	tree[k].sum=(tree[k<<1].sum+tree[k<<1|1].sum)%mod;
}
void add2(int k,int l,int r,int val)
{
	tree[k].add+=val;
	tree[k].add%=mod;
	tree[k].sum+=(val*(r-l+1));
	tree[k].sum%=mod;
}
void pushdown(int k,int l,int r,int mid)
{
	if(tree[k].add==0) return;
	add2(k<<1,l,mid,tree[k].add);
	add2(k<<1|1,mid+1,r,tree[k].add);
	tree[k].add=0;
}
void modify(int k,int l,int r,int val)
{
	if(tree[k].l>=l&&tree[k].r<=r) return add2(k,tree[k].l,tree[k].r,val);
	int mid=(tree[k].l+tree[k].r)>>1;
	pushdown(k,tree[k].l,tree[k].r,mid);
	if(l<=mid) modify(k<<1,l,r,val);
	if(r>mid) modify(k<<1|1,l,r,val);
	tree[k].sum=(tree[k<<1].sum+tree[k<<1|1].sum)%mod;
}
int solve(int k,int l,int r)
{
	if(tree[k].l>=l&&tree[k].r<=r) return tree[k].sum%mod;
	int mid=(tree[k].l+tree[k].r)>>1;
	pushdown(k,tree[k].l,tree[k].r,mid);
	int ret=0;
	if(l<=mid) ret+=solve(k<<1,l,r);
	ret%=mod;
	if(r>mid) ret+=solve(k<<1|1,l,r);
	return ret%mod;
}
void chain_add(int x,int y,int z)
{
	while(top[x]!=top[y])
	{
		if(dep[top[x]]<dep[top[y]]) swap(x,y);
		modify(1,num[top[x]],num[x],z);
		x=f[top[x]];
	}
	if(dep[x]>dep[y]) swap(x,y);
	modify(1,num[x],num[y],z); 
}
int chain_solve(int x,int y)
{
	int ans=0;
	while(top[x]!=top[y])
	{
		if(dep[top[x]]<dep[top[y]]) swap(x,y);
		ans+=solve(1,num[top[x]],num[x]);
		ans%=mod;
		x=f[top[x]];
	}
	if(dep[x]>dep[y]) swap(x,y);
	ans+=solve(1,num[x],num[y]);
	ans%=mod;
	return ans;
}
void tree_add(int x,int y)
{
	modify(1,num[x],num[x]+size[x]-1,y);
}
int tree_solve(int x)
{
	return solve(1,num[x],num[x]+size[x]-1)%mod;
}
void debug(int k){//查错函数
	if(tree[k].l==tree[k].r){
		cout<<tree[k].sum<<" ";
		return ;
	}
	debug(k<<1);debug(k<<1|1);
}
signed main()
{
	int x,y,z;
	scanf("%lld%lld%lld%lld",&n,&m,&rt,&mod);
	for(int i=1;i<=n;i++) a[i]=read();
	for(int i=1;i<n;i++)
	{
		x=read();
		y=read();
		add1(x,y);
		add1(y,x);
	}
	dfs1(rt,0);
	dfs2(rt,rt);
	build(1,1,n);
	for(int i=1;i<=m;i++)
	{
		vis=read();
		if(vis==1)
		{
			x=read();
			y=read();
			z=read();
			chain_add(x,y,z);
		}
		if(vis==2)
		{
			x=read();
			y=read();
			printf("%lld\n",chain_solve(x,y)%mod);
		}
		if(vis==3)
		{
			x=read();
			y=read();
			tree_add(x,y);
		}
		if(vis==4)
		{
			x=read();
			printf("%lld\n",tree_solve(x)%mod);
		}
	}
	return 0;
}

T2 树的计数

T3 染色

T4 LCA

参考资料 传送门1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值