四边形不等式优化dp专题
区间类dp的优化
几点性质
性质1,若函数 w ( l , r ) w(l,r) w(l,r)满足四边形不等式,则状态 f ( l , r ) f(l,r) f(l,r)也满足四边形不等式。
性质2,若状态f满足四边形不等式,记 m l , r m_{l,r} ml,r表示状态 f l , r f_{l,r} fl,r的最优决策点,那么必有 m l , r − 1 ≤ m l , r ≤ m l + 1 , r m_{l,r-1}\leq m_{l,r}\leq m_{l+1,r} ml,r−1≤ml,r≤ml+1,r
以上两性质的证明参见OI-wiki
核心代码
for (int len = 2; len <= n; ++len) // 枚举区间长度
for (int l = 1, r = len; r <= n; ++l, ++r) {
// 枚举长度为len的所有区间
f[l][r] = INF;
for (int k = m[l][r - 1]; k <= m[l + 1][r]; ++k)
if (f[l][r] > f[l][k] + f[k + 1][r] + w(l, r)) {
f[l][r] = f[l][k] + f[k + 1][r] + w(l, r); // 更新状态值
m[l][r] = k; // 更新(最小)最优决策点
}
}
T1 二叉搜索树
解析
f [ i ] [ j ] f[i][j] f[i][j]表示将 i − j i-j i−j中的所有节点建成一颗二叉搜索树,所需要付出的代价的最小值,因此可以用区间dp解决该题。
f [ i ] [ j ] = m i n ( f [ i ] [ k − 1 ] + f [ k + 1 ] [ j ] + x [ i . . j ] ) f[i][j]=min{(f[i][k-1]+f[k+1][j]}+x[i..j]) f[i][j]=min(f[i][k−1]+f[k+1][j]+x[i..j])表示我们当前要以k为根节点,合并 i . . . k − 1 , k + 1... j i...k-1,k+1...j i...k−1,k+1...j的节点为一棵二叉搜索树,因为合并后,每个节点会向下一层,因此我们要多付出的代价为 x i + . . . + x j x_i+...+x_j xi+...+xj,可以用前缀和来维护,即 s u m j − s u m i − 1 sum_j-sum_{i-1} sumj−sumi−1;
但这样的时间复杂度为 O ( n 3 ) O(n^3) O(n3),因此我们要考虑优化。
因为不会斜率优化dp ,因此考虑四边形不等式优化dp,然而我不会证明该题对于四边形不等式成立,因此可以通过打表来寻找规律,最后发现它具有决策单调性,因此时间复杂度优化至
O
(
n
2
)
O(n^2)
O(n2)
题解
#include<bits/stdc++.h>
#define INF 1e18
using namespace std;
long long f[5011][5011],sum[5100],n;
int g[5011][5011],v;
inline long long read()
{
long long f=1,re=0;
char ch;
for(ch=getchar();(ch<'0'||ch>'9')&&ch!='-';ch=getchar());
if(ch=='-')
{
f=-1;
ch=getchar();
}
for(;(ch>='0'&&ch<='9');ch=getchar())
re=(re<<3)+(re<<1)+ch-'0';
return re*f;
}
signed main()
{
long long x;
n=read();
for(int i=1;i<=n;i++)
{
x=read();
sum[i]=sum[i-1]+x;
f[i][i]=x;
g[i][i]=i;
}
for(int i=1;i<n;i++)
for(int j=1;(v=j+i)<=n;j++)
{
f[j][v]=INF;
for(int k=g[j][v-1];k<=g[j+1][v];k++)
if(f[j][v]>f[j][k-1]+f[k+1][v])
{
f[j][v]=f[j][k-1]+f[k+1][v];
g[j][v]=k;
}
f[j][v]+=(sum[v]-sum[j-1]);
}
printf("%lld",f[1][n]);
return 0;
}
T2 玩具装箱
解析
首先可以容易地得到dp方程为
f
[
i
]
=
m
i
n
(
f
[
j
]
+
(
s
u
m
[
i
]
−
s
u
m
[
j
]
+
i
−
j
−
1
−
l
)
2
)
(
j
∈
[
1
,
i
)
)
f[i]=min(f[j]+(sum[i]-sum[j]+i-j-1-l)^2)(j\in[1,i))
f[i]=min(f[j]+(sum[i]−sum[j]+i−j−1−l)2)(j∈[1,i))
f
[
i
]
f[i]
f[i]表示前i个玩具用容器装好后的最小代价;
但很明显,这样会超时,因此考虑四边形不等式优化dp,从而降低时间复杂度,该题可以较容易的证得四边形不等式成立,从而证出决策单调性;
证明过程如下:
(
c
[
i
]
c[i]
c[i]表示单个玩具的长度)
题解
#include<bits/stdc++.h>
#define INF 1e18
using namespace std;
long long n,l,f[50001],sum[50001],g[50001];
long long read()
{
int f=1;
long long re=0;
char ch;
for(ch=getchar();(ch<'0'||ch>'9')&&ch!='-';ch=getchar());
if(ch=='-')
{
f=-1;
ch=getchar();
}
for(;ch>='0'&&ch<='9';ch=getchar())
re=(re<<3)+(re<<1)+ch-'0';
return re*f;
}
signed main()
{
int x;
n=read();
l=read();
for(int i=1;i<=n;i++)
{
x=read();
sum[i]=sum[i-1]+x;
}
for(int i=1;i<=n;i++)
{
f[i]=INF;
for(int j=g[i-1];j<i;j++)
{
long long k=(sum[i]-sum[j]+i-j-1-l)*(sum[i]-sum[j]+i-j-1-l);
if(f[i]>f[j]+k)
{
f[i]=f[j]+k;
g[i]=j;
}
}
}
printf("%lld",f[n]);
return 0;
}
题外话
该题可以用斜率优化dp,我不会qwq
先放篇斜率优化dp题解
传送门
T3 邮局
解析
首先我们需要明确一点,邮局是建立在村庄里的(fhm觉得不用放在村庄, 我觉得他理解题意理解得非常到位 ),然后根据人类的智慧就可以得出结论 ,在
[
l
,
r
]
[l,r]
[l,r]的区间中,将邮局放在中间位置的村庄最优。
咳咳 ,其实可以证明,如下图:
因此我们先预处理处任意区间内,放一个邮局的最小代价,然后我们就可以得出dp方程:
f
[
i
]
[
j
]
=
m
i
n
(
f
[
k
]
[
j
−
1
]
+
d
[
k
+
1
]
[
i
]
)
)
(
k
∈
[
1
,
i
)
f[i][j]=min(f[k][j-1]+d[k+1][i]))(k\in[1,i)
f[i][j]=min(f[k][j−1]+d[k+1][i]))(k∈[1,i)
(
f
[
i
]
[
j
]
f[i][j]
f[i][j]表示前i个村庄,已经放了j个邮局)
然后显然会超时,所以考虑四边形不等式优化do,证明其决策单调性
证明过程如下:
然而并没有,因为我不会证明 但是可以通过打表来找规律
题解
#include<bits/stdc++.h>
#define INF 1e8
using namespace std;
int d[3003][3003],sum[3003],f[3004][3004];
int g[3004][3004],n,p,a[3005];
int main()
{
scanf("%d%d",&n,&p);
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
sum[i]=sum[i-1]+a[i];
}
for(int l=1;l<=n;l++)
for(int r=l;r<=n;r++)
{
long long mid=(l+r)>>1;
d[l][r]=(mid-l)*a[mid]-sum[mid-1]+sum[l-1];
d[l][r]+=(sum[r]-sum[mid]-(r-mid)*a[mid]);
}
memset(f,127,sizeof(f));
for(int i=1;i<=n;i++)
f[i][1]=d[1][i];
for(int i=1;i<=n;i++)
for(int j=1;j<=p;j++)
for(int k=g[i][j-1];k<=i;k++)
{
if(f[i][j]>f[k][j-1]+d[k+1][i])
{
f[i][j]=f[k][j-1]+d[k+1][i];
g[i][j]=k;
}
}
printf("%d",f[n][p]);
return 0;
}