四边形不等式优化dp专题

本文深入探讨了四边形不等式优化动态规划的原理与应用,通过三个经典案例——二叉搜索树、玩具装箱与邮局问题,详细讲解了如何利用四边形不等式优化降低时间复杂度,从O(n^3)优化至O(n^2),并提供了完整的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

四边形不等式优化dp专题

区间类dp的优化

在这里插入图片描述

几点性质

性质1,若函数 w ( l , r ) w(l,r) w(l,r)满足四边形不等式,则状态 f ( l , r ) f(l,r) f(l,r)也满足四边形不等式。

性质2,若状态f满足四边形不等式,记 m l , r m_{l,r} ml,r表示状态 f l , r f_{l,r} fl,r的最优决策点,那么必有 m l , r − 1 ≤ m l , r ≤ m l + 1 , r m_{l,r-1}\leq m_{l,r}\leq m_{l+1,r} ml,r1ml,rml+1,r

以上两性质的证明参见OI-wiki

核心代码


for (int len = 2; len <= n; ++len)  // 枚举区间长度
  for (int l = 1, r = len; r <= n; ++l, ++r) {
    // 枚举长度为len的所有区间
    f[l][r] = INF;
    for (int k = m[l][r - 1]; k <= m[l + 1][r]; ++k)
      if (f[l][r] > f[l][k] + f[k + 1][r] + w(l, r)) {
        f[l][r] = f[l][k] + f[k + 1][r] + w(l, r);  // 更新状态值
        m[l][r] = k;  // 更新(最小)最优决策点
      }
  }

T1 二叉搜索树

T1

解析

f [ i ] [ j ] f[i][j] f[i][j]表示将 i − j i-j ij中的所有节点建成一颗二叉搜索树,所需要付出的代价的最小值,因此可以用区间dp解决该题。

f [ i ] [ j ] = m i n ( f [ i ] [ k − 1 ] + f [ k + 1 ] [ j ] + x [ i . . j ] ) f[i][j]=min{(f[i][k-1]+f[k+1][j]}+x[i..j]) f[i][j]=min(f[i][k1]+f[k+1][j]+x[i..j])表示我们当前要以k为根节点,合并 i . . . k − 1 , k + 1... j i...k-1,k+1...j i...k1,k+1...j的节点为一棵二叉搜索树,因为合并后,每个节点会向下一层,因此我们要多付出的代价为 x i + . . . + x j x_i+...+x_j xi+...+xj,可以用前缀和来维护,即 s u m j − s u m i − 1 sum_j-sum_{i-1} sumjsumi1;

但这样的时间复杂度为 O ( n 3 ) O(n^3) O(n3,因此我们要考虑优化。

因为不会斜率优化dp ,因此考虑四边形不等式优化dp,然而我不会证明该题对于四边形不等式成立,因此可以通过打表来寻找规律,最后发现它具有决策单调性,因此时间复杂度优化至 O ( n 2 ) O(n^2) On2

题解

#include<bits/stdc++.h>
#define INF 1e18
using namespace std;
long long f[5011][5011],sum[5100],n;
int g[5011][5011],v;
inline long long read()
{
	long long f=1,re=0;
	char ch;
	for(ch=getchar();(ch<'0'||ch>'9')&&ch!='-';ch=getchar());
	if(ch=='-')
	{
		f=-1;
		ch=getchar();
	}
	for(;(ch>='0'&&ch<='9');ch=getchar())
		re=(re<<3)+(re<<1)+ch-'0';
	return re*f;
}
signed main()
{
	long long x;
	n=read();
	for(int i=1;i<=n;i++)
	{
		x=read();
		sum[i]=sum[i-1]+x;
		f[i][i]=x;
		g[i][i]=i;
	}
	for(int i=1;i<n;i++)
		for(int j=1;(v=j+i)<=n;j++)
		{
			f[j][v]=INF;
			for(int k=g[j][v-1];k<=g[j+1][v];k++)
				if(f[j][v]>f[j][k-1]+f[k+1][v])
				{
					f[j][v]=f[j][k-1]+f[k+1][v];
					g[j][v]=k;
				}
			f[j][v]+=(sum[v]-sum[j-1]);
		}
	printf("%lld",f[1][n]);
	return 0;
}

T2 玩具装箱

解析

首先可以容易地得到dp方程为
f [ i ] = m i n ( f [ j ] + ( s u m [ i ] − s u m [ j ] + i − j − 1 − l ) 2 ) ( j ∈ [ 1 , i ) ) f[i]=min(f[j]+(sum[i]-sum[j]+i-j-1-l)^2)(j\in[1,i)) f[i]=min(f[j]+(sum[i]sum[j]+ij1l)2)(j[1,i))
f [ i ] f[i] f[i]表示前i个玩具用容器装好后的最小代价;

但很明显,这样会超时,因此考虑四边形不等式优化dp,从而降低时间复杂度,该题可以较容易的证得四边形不等式成立,从而证出决策单调性;

证明过程如下:
证明过程
c [ i ] c[i] c[i]表示单个玩具的长度)

题解

#include<bits/stdc++.h>
#define INF 1e18
using namespace std;
long long n,l,f[50001],sum[50001],g[50001];
long long read()
{
	int f=1;
	long long re=0;
	char ch;
	for(ch=getchar();(ch<'0'||ch>'9')&&ch!='-';ch=getchar());
	if(ch=='-')
	{
		f=-1;
		ch=getchar();
	}
	for(;ch>='0'&&ch<='9';ch=getchar())
		re=(re<<3)+(re<<1)+ch-'0';
	return re*f;
}
signed main()
{
	int x;
	n=read();
	l=read();
	for(int i=1;i<=n;i++)
	{
		x=read();
		sum[i]=sum[i-1]+x;
	}
	for(int i=1;i<=n;i++)
	{
		f[i]=INF;
		for(int j=g[i-1];j<i;j++)
		{
			long long k=(sum[i]-sum[j]+i-j-1-l)*(sum[i]-sum[j]+i-j-1-l);
			if(f[i]>f[j]+k)
			{
				f[i]=f[j]+k;
				g[i]=j;
			}
		}
	}
	printf("%lld",f[n]);
	return 0;
}

题外话

该题可以用斜率优化dp,我不会qwq
先放篇斜率优化dp题解
传送门

T3 邮局

解析

首先我们需要明确一点,邮局是建立在村庄里的(fhm觉得不用放在村庄, 我觉得他理解题意理解得非常到位 ),然后根据人类的智慧就可以得出结论 ,在 [ l , r ] [l,r] [l,r]的区间中,将邮局放在中间位置的村庄最优。
咳咳 ,其实可以证明,如下图:
证明
因此我们先预处理处任意区间内,放一个邮局的最小代价,然后我们就可以得出dp方程:
f [ i ] [ j ] = m i n ( f [ k ] [ j − 1 ] + d [ k + 1 ] [ i ] ) ) ( k ∈ [ 1 , i ) f[i][j]=min(f[k][j-1]+d[k+1][i]))(k\in[1,i) f[i][j]=min(f[k][j1]+d[k+1][i]))(k[1,i)
( f [ i ] [ j ] f[i][j] f[i][j]表示前i个村庄,已经放了j个邮局)
然后显然会超时,所以考虑四边形不等式优化do,证明其决策单调性
证明过程如下:
然而并没有,因为我不会证明 但是可以通过打表来找规律

题解

#include<bits/stdc++.h>
#define INF 1e8
using namespace std;
int d[3003][3003],sum[3003],f[3004][3004];
int g[3004][3004],n,p,a[3005];
int main()
{
	scanf("%d%d",&n,&p);
	for(int i=1;i<=n;i++)
	{
		scanf("%d",&a[i]);
		sum[i]=sum[i-1]+a[i];
	}
	for(int l=1;l<=n;l++)
		for(int r=l;r<=n;r++)
		{
			long long mid=(l+r)>>1;
			d[l][r]=(mid-l)*a[mid]-sum[mid-1]+sum[l-1];
			d[l][r]+=(sum[r]-sum[mid]-(r-mid)*a[mid]);
		}
	memset(f,127,sizeof(f));
	for(int i=1;i<=n;i++)
		f[i][1]=d[1][i];
	for(int i=1;i<=n;i++)
		for(int j=1;j<=p;j++)
			for(int k=g[i][j-1];k<=i;k++)
				{
					if(f[i][j]>f[k][j-1]+d[k+1][i])
					{
						f[i][j]=f[k][j-1]+d[k+1][i];
						g[i][j]=k;
					}
				}
	printf("%d",f[n][p]);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值