费马小定理、欧拉定理&拓展欧拉定理

费马小定理&欧拉定理

内容

欧拉定理:当 g c d ( a , m ) = 1 gcd(a,m)=1 gcd(a,m)=1时,有 a ϕ ( m ) ≡ 1 ( m o d m ) a^{\phi(m)}\equiv1{\pmod{m}} aϕ(m)1(modm)
费马小定理:当 m m m为质数且 a a a不为 m m m的倍数时有 a m − 1 ≡ 1 ( m o d m ) a^{m-1}\equiv1\pmod{m} am11(modm)
由上可以看出,费马小定理其实就是欧拉定理的一种特殊情况,因为当 m m m为质数的时候, ϕ ( m ) = m − 1 \phi(m)=m-1 ϕ(m)=m1

欧拉定理的证明

首先,我们取出所有小于 m m m并且与 m m m互质的数:
记为: x 1 , x 2 , x 3 . . . x ϕ ( m ) x_1,x_2,x_3...x_{\phi(m)} x1,x2,x3...xϕ(m)
由于我们要得到 a ϕ ( m ) a^{\phi(m)} aϕ(m),所以我们将这些数都乘上 a a a
记为: p 1 = a x 1 , p 2 = a x 2 , . . . p ϕ ( m ) = a x ϕ ( m ) p_1=ax_1,p_2=ax_2,...p_{\phi(m)}=ax_{\phi(m)} p1=ax1,p2=ax2,...pϕ(m)=axϕ(m)

引理1:对于上述两种形式,任意两个 x i x_i xi间模 m m m不同余,任意两个 p i p_i pi之间模 m m m不同余
证明:
显然,此引理对于 x i x_i xi成立
那么我们考虑 p i p_i pi,反证法
不妨假设 i ≠ j , p i ≡ p j ( m o d m ) i\ne j,p_i\equiv p_j\pmod{m} i=j,pipj(modm)
由此可得, p i − p j ≡ 0 ( m o d m ) p_i-p_j\equiv0\pmod{m} pipj0(modm),即 a ( x i − x j ) ≡ 0 ( m o d m ) a(x_i-x_j)\equiv0\pmod{m} a(xixj)0(modm)
又gcd(a,m)=1,所以 x i ≡ x j ( m o d m ) x_i\equiv x_j\pmod{m} xixj(modm),矛盾,故得证

引理2:任意 p i p_i pi模m的余数都与 m m m互质
证明:
由条件可得, g c d ( a , m ) = g c d ( x i , m ) = 1 gcd(a,m)=gcd(x_i,m)=1 gcd(a,m)=gcd(xi,m)=1
因此 g c d ( a x i , m ) = 1 gcd(ax_i,m)=1 gcd(axi,m)=1,即 g c d ( p i , m ) = 1 gcd(p_i,m)=1 gcd(pi,m)=1
根据欧几里得算法可得, g c d ( m , p i m o d    m ) = g c d ( p i , m ) = 1 gcd(m,p_i\mod m)=gcd(p_i,m)=1 gcd(m,pimodm)=gcd(pi,m)=1,故得证。

那么根据引理1,2可得, p i p_i pi m m m的余数与 x i x_i xi一一对应.
因此 p 1 ∗ p 2 ∗ p 3 . . . ∗ p ϕ ( m ) ≡ x 1 ∗ x 2 ∗ x 3 . . . ∗ x ϕ ( m ) ( m o d m ) p_1*p_2*p_3...*p_{\phi(m)}\equiv{x_1*x_2*x_3...*x_{\phi(m)}}\pmod{m} p1p2p3...pϕ(m)x1x2x3...xϕ(m)(modm)
⇒ a ϕ ( m ) ∗ x 1 ∗ x 2 . . . x ϕ ( m ) ) ≡ x 1 ∗ x 2 . . . ∗ x ϕ ( m ) ( m o d m ) \Rightarrow a^{\phi(m)}*x_1*x_2...x_{\phi(m)})\equiv{x_1*x_2...*x_{\phi(m)}}\pmod{m} aϕ(m)x1x2...xϕ(m))x1x2...xϕ(m)(modm)
g c d ( x 1 ∗ x 2 ∗ . . . x ϕ ( m ) , m ) = 1 gcd(x_1*x_2*...x_{\phi(m)},m)=1 gcd(x1x2...xϕ(m),m)=1
⇒ a ϕ ( m ) ≡ 1 ( m o d m ) \Rightarrow a^{\phi(m)}\equiv1\pmod{m} aϕ(m)1(modm)

欧拉定理的推论

g c d ( a , m ) = 1 gcd(a,m)=1 gcd(a,m)=1时,有 a b ≡ a b m o d    ϕ ( m ) ( m o d m ) a^b\equiv a^{b\mod\phi(m)}\pmod{m} ababmodϕ(m)(modm)
证明:
因为 a b = a k ϕ ( m ) + b m o d    ϕ ( m ) a^b=a^{k\phi(m)+b\mod\phi(m)} ab=akϕ(m)+bmodϕ(m)
又由欧拉定理可得, a k ϕ ( m ) + b m o d    ϕ ( m ) ≡ a b m o d    ϕ ( m ) ( m o d m ) a^{k\phi(m)+b\mod\phi(m)}\equiv{a^{b\mod\phi(m)}}\pmod{m} akϕ(m)+bmodϕ(m)abmodϕ(m)(modm)
故得证

应用:大指数的运算时,可以用此推论来减少运算次数

拓展欧拉定理

内容

g c d ( a , m ) ≠ 1 gcd(a,m) \ne1 gcd(a,m)=1时,有 a b ≡ a b m o d    ϕ ( m ) + ϕ ( m ) ( m o d m ) a^b\equiv{a^{b\mod \phi(m)+\phi(m)}}\pmod{m} ababmodϕ(m)+ϕ(m)(modm), b ≥ ϕ ( m ) b\ge\phi(m) bϕ(m)

证明

由于此时 g c d ( a , m ) ≠ 1 gcd(a,m)\ne 1 gcd(a,m)=1,于是先前的方法,并不奏效,于是我们考虑 a a a, m m m的共同质因子 p p p
于是问题就转换为了, p b ≡ p b m o d    ϕ ( m ) + ϕ ( m ) ( m o d m ) p^b\equiv{p^{b\mod \phi(m)+\phi(m)}}\pmod{m} pbpbmodϕ(m)+ϕ(m)(modm)
因为考虑除去这些质因子,那么就满足欧拉定理,此式子也必然满足。

首先我们设 m = s ∗ p r m=s*p^r m=spr,显然有 g c d ( s , p ) = 1 gcd(s,p)=1 gcd(s,p)=1
由于欧拉函数为积性函数,即当 g c d ( a , b ) = 1 gcd(a,b)=1 gcd(a,b)=1时, ϕ ( a ∗ b ) = ϕ ( a ) ∗ ϕ ( b ) \phi(a*b)=\phi(a)*\phi(b) ϕ(ab)=ϕ(a)ϕ(b)
因此, ϕ ( s ) ∣ ϕ ( m ) \phi(s)|\phi(m) ϕ(s)ϕ(m)
又, p ϕ ( s ) ≡ 1 ( m o d s ) p^{\phi(s)}\equiv 1\pmod{s} pϕ(s)1(mods)(欧拉定理)
⇒ p ϕ ( m ) ≡ 1 ( m o d s ) \Rightarrow p^{\phi(m)}\equiv1\pmod{s} pϕ(m)1(mods)
根据同余的性质,同余式两边同乘上 p r p^r pr,模数也乘上 p r p^r pr(可以手推一下,是成立的)
⇒ p ϕ ( m ) ∗ r ≡ p r ( m o d m = s ∗ p r ) \Rightarrow p^{\phi(m)*r}\equiv p^r\pmod{m=s*p^r} pϕ(m)rpr(modm=spr)
⇒ p b ≡ p b − r + r ≡ p b − r + ϕ ( m ) + r ≡ p b + ϕ ( m ) m o d    ( m ) \Rightarrow p^b≡p^{b-r+r}≡p^{b-r+\phi(m)+r}≡p^{b+\phi(m)}\mod (m) pbpbr+rpbr+ϕ(m)+rpb+ϕ(m)mod(m)
⇒ p ( b − ϕ ( m ) ) ≡ p ( b − ϕ ( m ) ) + ϕ ( m ) ≡ p b m o d    ( m ) \Rightarrow p^{(b-\phi(m))}≡p^{(b-\phi(m))+\phi(m)}≡p^b\mod (m) p(bϕ(m))p(bϕ(m))+ϕ(m)pbmod(m)
⇒ p b m o d    ϕ ( m ) + ϕ ( m ) ≡ p b m o d    ( m ) \Rightarrow p^{b\mod\phi(m)+\phi(m)}≡p^b\mod (m) pbmodϕ(m)+ϕ(m)pbmod(m)
故得证

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值