莫比乌斯函数的证明

这篇博客详细探讨了莫比乌斯函数的概念,从命题到性质,再到构造过程和不同类型的证明,包括朴素证明和构造性证明。通过举例和深入的数学分析,解释了如何确定莫比乌斯函数的系数,以及它与约数和的关系。最终,博主通过严谨的数学推导证明了莫比乌斯函数的性质。
摘要由CSDN通过智能技术生成

遗忘是可怕的东西……好记性不如烂笔头讲真……

命题

现在假设我不知道什么是莫比乌斯函数,只知道

F(x)=dxf(d)
若已知 F(x) ,求 f(x) 的表达式

性质

从已知的关系,可以得到性质:
1. 若 y|x(y<x) ,则 F(y) 包含的所有 f(d) 都被 F(x) 包含了, F(y) 不能包含 f(x)
2. 包含 f(x) 的最小项是 F(x)

构造

x 的第 i 小的约数是 yi(yi<x) ,共有 k 个约数,则

f(x)=F(x)1ikf(yi)
由于左边的 f(x) 是一次的,所以右边是 F(yi) 的线性组合,设 ai 作为 F(yi) 的系数,即

f(x)=F(x)+1ikaiF(yi)=F(x)+1ikbif(yi)
可知所有的 bi=1 .现在即要求解 ai .

yk ,即 x 的最大真约数开始解,只有 F(yk) 包含了 f(yk) ,可得 ak=1 。同时对所有 f(yk) 前的系数都贡献-1。
再看 yk1 ,如果 f(yk1) 前的系数已经被贡献了-1,则 ak=0 ,看下一个约数;否则要令 +ak1=1 ,由此确定 ak1

举例

举个例子:

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值