遗忘是可怕的东西……好记性不如烂笔头讲真……
命题
现在假设我不知道什么是莫比乌斯函数,只知道
F(x)=∑d∣xf(d)
若已知 F(x) ,求 f(x) 的表达式。
性质
从已知的关系,可以得到性质:
1. 若 y|x(y<x) ,则 F(y) 包含的所有 f(d) 都被 F(x) 包含了, F(y) 不能包含 f(x)
2. 包含 f(x) 的最小项是 F(x)
构造
记 x 的第
f(x)=F(x)+∑1≤i≤kaiF(yi)=F(x)+∑1≤i≤kbif(yi)
可知所有的
bi=−1
.现在即要求解
ai
.
从 yk ,即 x 的最大真约数开始解,只有
再看 yk−1 ,如果 f(yk−1) 前的系数已经被贡献了-1,则 ak=0 ,看下一个约数;否则要令 当前的贡献值+ak−1=−1 ,由此确定 ak−1
举例
举个例子: