一、冒泡排序
简单描述:
相邻的两个元素之间进行比较、交换,每一遍都将最大的元素放置最后,直到没有再需要比较的。
算法步骤:
- 比较相邻的两个元素,如果第一个比第二个大,就交换,否则不动;
- 对每一对相邻元素进行比较,从第一对比到最后一对,最后的元素就是最大的;
- 除了最后一个元素,都重复上述操作;
- 每一遍都将最大的元素放置最后,直到没有需要比较的。
动图演示:
最好/最坏情况:
最好正序,O(n);最坏反序,O(n²)。
时间复杂度:
O(n²)
空间复杂度:
O(1)
稳定性:
稳定
JavaScript代码:
function bubbleSort(arr) {
var len = arr.length;
for (var i = 0; i < len - 1; i++) {
for (var j = 0; j < len - 1 - i; j++) {
if (arr[j] > arr[j+1]) {
var temp = arr[j+1];
arr[j+1] = arr[j];
arr[j] = temp;
}
}
}
return arr;
}
二、选择排序
简单描述:
每次遍历都选出最小或最大的元素放到前边有序地排列。
算法步骤:
- 在未排序的序列中选出最大(小)的元素,存放到排序序列的起始位置;
- 从剩余的未排序的序列中再选出最大(小)的元素,放到已排序序列的末尾;
- 重复以上操作,直到所有元素都排完。
动画演示:
最好/最坏情况:
没有最好最坏情况,所有元素都是O(n²)的时间复杂度,数据规模越小越好。
时间复杂度:
O(n²)
空间复杂度:
O(1)
稳定性:
不稳定
JavaScript代码:
function selectionSort(arr){
var len = arr.length;
var temp,minIndex;
for(var i=0;i<len-1;i++){
minIndex = i;
for(var j=i+1;j<len;j++){
if(arr[minIndex]>arr[j]){
minIndex = j;
}
}
temp = arr[minIndex];
arr[minIndex] = arr[i];
arr[i] = temp;
}
return arr;
}
三、插入排序
简单描述:
将没有排序的序列元素,插入到已排序的序列元素中
算法描述:
- 把序列的第一个元素堪称有序序列,后边的都看成未排序序列;
- 从头到尾扫描未排序序列,将元素插入到有序序列中的合适位置(如果元素相等,插入到相等元素的后边)
动图展示:
最好/最坏情况:
最好正序,O(n);最坏反序,O(n²)。
时间复杂度:
O(n²)
空间复杂度:
O(1)
稳定性:
稳定
JavaScript代码:
function insertSort(arr){
var len = arr.length;
var preIndex,current;
for(var i=1;i<len;i++){
preIndex = i-1;
current = arr[i];
while(preIndex>=0 && current<arr[preIndex]){
arr[preIndex+1] = arr[preIndex];
preIndex--;
}
arr[preIndex+1] = current;
}
return arr;
}
四、希尔排序
简单描述:
是插入排序的改进版本,将队列分割成若干个子序列,分别进行直接插入排序。
算法描述:
- 选择一个增量序列t1,t2,t3,......,tk,其中ti>tj,tk=1;
- 按照增量序列个数k,对序列进行k趟排序;
- 每一趟排序,都根据对应的增量ti,把待排序列分割成若干个长度为m的子序列,分别对各个子表进行直接插入排序;
动图展示:
时间复杂度:
O(n log²n)
空间复杂度:
O(1)
稳定性:
不稳定
JavaScript代码:
function shellSort(arr) {
var len = arr.length,
temp,
gap = 1;
while(gap < len/3) {
gap =gap*3+1;
}
for (gap; gap > 0; gap = Math.floor(gap/3)) {
for (var i = gap; i < len; i++) {
temp = arr[i];
for (var j = i-gap; j >= 0 && arr[j] > temp; j-=gap) {
arr[j+gap] = arr[j];
}
arr[j+gap] = temp;
}
}
return arr;
}
五、归并排序
简单描述:
采用分治法的算法思想进行排序
算法描述:
-
申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列;
-
设定两个指针,最初位置分别为两个已经排序序列的起始位置;
-
比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置;
-
重复步骤 3 直到某一指针达到序列尾;
-
将另一序列剩下的所有元素直接复制到合并序列尾
动图展示:
时间复杂度:
O(n log n)
空间复杂度:
O(n)
稳定性:
稳定
JavaScript代码:
function mergeSort(arr) { // 采用自上而下的递归方法
var len = arr.length;
if(len < 2) {
return arr;
}
var middle = Math.floor(len / 2),
left = arr.slice(0, middle),
right = arr.slice(middle);
return merge(mergeSort(left), mergeSort(right));
}
function merge(left, right)
{
var result = [];
while (left.length && right.length) {
if (left[0] <= right[0]) {
result.push(left.shift());
} else {
result.push(right.shift());
}
}
while (left.length)
result.push(left.shift());
while (right.length)
result.push(right.shift());
return result;
}
六、快速排序
简单描述:
采用分治法的算法思想进行排序,选一个数为基准,小的放前边,大的放后边,再分别将小的和大的子序列递归地进行排序。
算法描述:
-
从数列中挑出一个元素,称为 "基准"(pivot);
-
重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;
-
递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序;
动图展示:
时间复杂度:
O(n log n)
空间复杂度:
O(log n)
稳定性:
不稳定
JavaScript代码:
function quickSort(arr, left, right) {
var len = arr.length,
partitionIndex,
left = typeof left != 'number' ? 0 : left,
right = typeof right != 'number' ? len - 1 : right;
if (left < right) {
partitionIndex = partition(arr, left, right);
quickSort(arr, left, partitionIndex-1);
quickSort(arr, partitionIndex+1, right);
}
return arr;
}
function partition(arr, left ,right) { // 分区操作
var pivot = left, // 设定基准值(pivot)
index = pivot + 1;
for (var i = index; i <= right; i++) {
if (arr[i] < arr[pivot]) {
swap(arr, i, index);
index++;
}
}
swap(arr, pivot, index - 1);
return index-1;
}
function swap(arr, i, j) {
var temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
function partition2(arr, low, high) {
let pivot = arr[low];
while (low < high) {
while (low < high && arr[high] > pivot) {
--high;
}
arr[low] = arr[high];
while (low < high && arr[low] <= pivot) {
++low;
}
arr[high] = arr[low];
}
arr[low] = pivot;
return low;
}
function quickSort2(arr, low, high) {
if (low < high) {
let pivot = partition2(arr, low, high);
quickSort2(arr, low, pivot - 1);
quickSort2(arr, pivot + 1, high);
}
return arr;
}
七、堆排序
简单描述:
利用堆这种数据结构所设计的一种排序算法
算法描述:
-
创建一个堆 H[0……n-1];
-
把堆首(最大值)和堆尾互换;
-
把堆的尺寸缩小 1,并调用 shift_down(0),目的是把新的数组顶端数据调整到相应位置;
-
重复步骤 2,直到堆的尺寸为 1。
动图展示:
时间复杂度:
O(n log n)
空间复杂度:
O(1)
稳定性:
不稳定
JavaScript代码:
var len; // 因为声明的多个函数都需要数据长度,所以把len设置成为全局变量
function buildMaxHeap(arr) { // 建立大顶堆
len = arr.length;
for (var i = Math.floor(len/2); i >= 0; i--) {
heapify(arr, i);
}
}
function heapify(arr, i) { // 堆调整
var left = 2 * i + 1,
right = 2 * i + 2,
largest = i;
if (left < len && arr[left] > arr[largest]) {
largest = left;
}
if (right < len && arr[right] > arr[largest]) {
largest = right;
}
if (largest != i) {
swap(arr, i, largest);
heapify(arr, largest);
}
}
function swap(arr, i, j) {
var temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
function heapSort(arr) {
buildMaxHeap(arr);
for (var i = arr.length-1; i > 0; i--) {
swap(arr, 0, i);
len--;
heapify(arr, 0);
}
return arr;
}