DeepSeek 推理效率优化探讨 meetup 议题征集

图片

当开源创新遇上推理革命发生了一系列化学反应,DeepSeek 通过开源高性能模型及配套工具链(如 Flash MLA、DeepEP 等),为开发者社区提供了创新实践。同时,社区中的各种开源项目,如推理引擎也吸收了这些开源创新成果,为整个行业应用 DeepSeek 模型,提升推理效率提供了新动能。这种双向的技术流动,使得模型研发与工程落地形成了正向循环。

在推理引擎层,自 DeepSeek R1 和 V3 发布以来,SGLang 通过多项关键技术突破成为其最强开源推理引擎;与此同时,vLLM 专注于大规模语言模型推理优化,通过跨节点专家并行(EP)等技术实现更高吞吐量与更低延迟,而 Triton 则在高性能计算和大规模模型部署领域持续发挥重要作用,共同推动推理引擎技术的演进。另外,DeepSeek 开源的 Flash MLA 通过优化注意力计算流程,支持低精度(FP8)训练和推理,减少内存占用与带宽需求,显著降低算力消耗;DeepEP 框架,支持跨节点的大规模模型推理,显著提升吞吐量和降低延迟,适用于高稀疏性 MoE 模型的推理优化。这些底层技术的开源共享,为推理引擎的持续进化提供了燃料。

在编排调度层, Kubernetes 作为公认 的 AI 算力调度的事实标准,在弹性伸缩、资源管理、多云支持方面提供关键能力,实现对加速硬件的统一管理,将异构算力抽象为可调度的资源池,并提供动态扩缩容能力,应对 AI 负载的突发性。Volcano 项目通过资源优化和任务编排,帮助大模型推理服务实现高吞吐、低延迟、低成本的稳定运行;Kueue 项目实现 AI 负载队列管理、优先级抢占等策略支持;AIBrix 项目作为首个企业级推理系统,优化推理效率加速大模型服务服务落地;LWS 项目突破性地实现跨界点的推理调度和弹性伸缩,解决分布式推理任务的资源协同困难,多种开源项目能力的相互支撑,都成为 AI 模型效率提升的底层支撑。

如今, 从编排调度到推理引擎,开源技术已形成独特生态效应,这种层层递进、环环相扣的技术栈革新,正在重塑大模型落地的成本曲线。越来越多的开发者可以基于开源社区创新项目,快速实现模型推理成本的降低和响应速度的提升。

为深入探讨模型推理效率优化的前沿技术与实践,「DaoCloud 道客」计划于 2025 年 4 月 12 日在模速空间举办 “DeepSeek 推理效率优化探讨 meetup”,揭秘大模型背后的效率革命 。

现面向行业专家、开发者及技术团队公开征集议题,希望与大家共同展开深度交流与探讨,推动模型推理的创新与落地。

议题征集点击下方链接:

https://www.feishu.cn/share/base/form/shrcnd1OitQfVCXXmut1YZgxPLd?share_link_type=qrcode&ccm_open_type=form_qrcode

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值