(环形追及问题)A、B、C、D四只蚂蚁在一个正方形的操场上跑步,他们的速度分别为1圈/分钟,1.5圈/分钟,2圈/分钟,2.5圈/分钟。他们不带起始位置和带起始位置的解决。

本文探讨了一道关于A、B、C、D四只蚂蚁在正方形操场跑步的环形追及问题。蚂蚁的速度分别为1、1.5、2、2.5圈/分钟。文章介绍了如何计算蚂蚁两两相遇的次数,并提供了(1)十分钟和(2)九分钟后的相遇次数解法。此外,还讨论了(3)带有初始位置情况下的追及时间计算,以及如何使用代码解决此类问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

求解:(1)十分钟后蚂蚁间两两相遇的次数。

            (2)九分钟后蚂蚁间两两相遇的次数。

            (3)若开始时A在起点,B在操场的1/4处,C在操场的1/2处,D在操场的3/4处,又如何?

首先我们来分析这个问题,环形追及相遇问题有一个默认的已知条件:

当快的追上慢的的时候经过的路程差(此处为路程差,手机上看到的路程是错误的)刚好为跑道一周的长度。

由此我们可以得到一个公式:

                    跑道一周的长度=速度差×追及时间

由题已知速度差和跑道长度可以根据公式计算得出追及时间

                    追及时间=跑道一周的长度÷速度差

因为每一次追上之后对于环形而言又是全新的开始所以:

                    相遇的次数=总时间÷追及时间

这道题(1)(2)问只需算出这些蚂蚁两两之间的追及时间即可简单得出结论。

因为剩下的步骤都是一些重复的计算所以可以考虑用代码完成

 

(1)(2)问代码实现如下

#python3
#定义一个蚂蚁类,这个蚂蚁类有名字属性和速度属性
class Ant(object):

    def __init__(self, name, speed):
        self.name = name
        self.speed = speed

#追及时间=跑道一周的长度÷速度差
d
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值