USACO1.5 Checker Challenge(类n皇后问题)

本文深入探讨了一个类似于八皇后问题的6x6棋盘挑战,目标是在棋盘上放置棋子,确保每行、每列及对角线上的棋子数量恰好为一。文章提供了详细的C++代码实现,通过递归搜索找到所有可能的解决方案,并输出前三种解决方案及其总数。
B - B
Time Limit:1000MS     Memory Limit:16000KB     64bit IO Format:%lld & %llu
 

Description

Examine the $6\times 6$ checkerboard below and note that the six checkers are arranged on the board so that one and only one is placed in each row and each column, and there is never more than one in any diagonal. (Diagonals run from southeast to northwest and southwest to northeast and include all diagonals, not just the major two.)

 1   2   3   4   5   6
  -------------------------
1 |   | O |   |   |   |   |
  -------------------------
2 |   |   |   | O |   |   |
  -------------------------
3 |   |   |   |   |   | O |
  -------------------------
4 | O |   |   |   |   |   |
  -------------------------
5 |   |   | O |   |   |   |
  -------------------------
6 |   |   |   |   | O |   |
  -------------------------

The solution shown above is described by the sequence 2 4 6 1 3 5, which gives the column positions of the checkers for each row from $1$ to $6$:

ROW    1    2   3   4   5   6
COLUMN 2    4   6   1   3   5 

This is one solution to the checker challenge. Write a program that finds all unique solution sequences to the Checker Challenge (with ever growing values of $N$). Print the solutions using the column notation described above. Print the the first three solutions in numerical order, as if the checker positions form the digits of a large number, and then a line with the total number of solutions.

Input

A single line that contains a single integer $N$ ($6\leq N\leq 13$) that is the dimension of the $N\times N$ checkerboard.

Output

The first three lines show the first three solutions found, presented as $N$ numbers with a single space between them. The fourth line shows the total number of solutions found.

Sample Input

6

Sample Output

2 4 6 1 3 5 
3 6 2 5 1 4 
4 1 5 2 6 3 
4

 

题解:雷同于八皇后问题。。只是增加了输出摆放的前三种和摆放办法

 

#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std;
int n,num,s[30],vis[30][30];;
void search(int cur)
{
    int i;
    if (cur>n)
    {
        num++;
        if (num<=3)
        {
            for (i=1; i<n; i++) printf("%d ",s[i]);
            printf("%d\n",s[n]);
        }
        return;
    }
    for (i=1; i<=n; i++)
    {
        if(!vis[0][i]&&!vis[1][cur+i]&&!vis[2][cur-i+n])
        {
            s[cur]=i;
            vis[0][i]=vis[1][cur+i]=vis[2][cur-i+n]=1;
            search(cur+1);
            vis[0][i]=vis[1][cur+i]=vis[2][cur-i+n]=0;
        }
    }
}
int main()
{
    scanf("%d",&n);
    memset(s,0,sizeof(s));
    num=0;
    search(1);
    printf("%d\n",num);
    return 0;
}

 

转载于:https://www.cnblogs.com/hfc-xx/p/4694262.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值