1
、向量是什么
1.1
、向量的定义
在数学中,
向量
(也称为欧几里得向量、几何向量、矢量),指具有
大小
和
方向
的量。它可以形象化地
表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做
数量
(物理学中称标量),数量(或标量)只有大小,没有方向。

1.2
、向量的表示
向量的记法:印刷体记作粗体的字母(如
a,b,u,v
),书写时在字母顶上加一小箭头
''
→
''
。如果给定向量
的起点(
A
)和终点(
B
),可将向量记作
。实际上向量有多种记法,可以用元组表示一个向量,
如
或
。在线性代数中,
n
元向量可以用
n×1
矩阵表示,如:

我们就可以把这多维度的向量想成一个立体的空间

向量的几何意义就是空间中的点,物理意义就是速度或者力这样的矢量。
向量的分量我们称之为维度,
n
维向量集合的全体就构成了
n
维欧式空间,一个
n
维向量其实就是一个
n
维欧式空间的一个点。
2
、行向量与列向量
行向量
在线性代数中,是一个
的矩阵,即矩阵由一个含有
n
个元素的行所组成即行向量。行向量
的
转置
是一个
列向量
,反之亦然。
行向量示例:



进行运算


9
、逆矩阵
9.1
、逆矩阵定义
矩阵有
AB
云散,但是没有
A/B
这么一说,只有逆矩阵。
逆矩阵怎么定义的?
假设有个矩阵
A
,注意它一定是方阵(必须是方阵),乘以矩阵
B
等于单位矩阵
:
或者
那么我们称这里的
B
为
A
的右逆矩阵,和左逆矩阵。
有个很重要的结论就是,如果这样的
B
存在的话,它的左逆和右逆一定相等,统称为
A
的逆矩阵
。则:
9.2
、逆矩阵作用
矩阵求逆有什么用呢?它可以帮助我们解线性方程组,比如
。两边同时乘以
X
的逆:

设 是
n
阶方阵,如果存在数 和非零
n
维
列向量
,使得
成立,则称 是矩阵 的一个
特征值
(eigenvalue)
, 是特征值
对应的特征向量(
eigenvector
) 。
矩阵 对向量 进行变换,这个变换的特殊之处是当它作用在特征向量 上的时候, 只发生了缩放
变换,它的方向并没有改变,并没有旋转。
观察发现, 和
在同一条直线上,只是长度不同,此时我们称 是 的特征向量,而
的长度是
长度的 倍, 就是特征值。
如果
n
阶方阵 是满秩矩阵,那么矩阵 有
n
个不同的特征值和特征向量。
2.2
、特征值分解意义
一个矩阵其实就是一个
线性变换
,因为一个矩阵乘以一个向量后得到的向量,其实就相当于将这个
向量进行了线性变换。
当矩阵是高维的情况下,那么这个矩阵就是高维空间下的一个线性变换,这个线性变化可能没法通
过图片来表
示,但是可以想象,这个变换也同样有很多的变换方向,我们通过特征值分解得到的前
N
大特征向量,
那么就对
应了这个矩阵最主要的
N
个变化方向。我们利用这前
N
个变化方向,就可以近似表达这个矩阵(变
换)。也就是
说的:
提取
这个矩阵
最重要
的特征。
总结一下,特征值分解可以得到特征值与特征向量,特征值
大小
表示的是这个特征到底有多
重要
,
而特征向量表示这个特征
是什么
,可以将每一个特征向量理解为一个线性的子空间,我们可以利用这些
线性的子空间干很多的事情。
不过,特征值分解也有很多的
限制
,比如说变换的矩阵必须是
方阵
。
4
、奇异值分解(
SVD
)
4.1
、什么是奇异值分解
特征值分解是一个提取矩阵特征很不错的方法,但是它
只适用于方阵
。而在现实的世界中,我们看到的
大部分矩阵都不是方阵,比如说有
m
个学生,每个学生有
n
科成绩,这样形成的一个
m * n
的矩阵就
可能不是方阵,我们怎样才能像描述特征值一样描述这样一般矩阵呢的重要特征呢?奇异值分解就是用
来干这个事的,奇异值分解是一个能适用于任意的矩阵的一种分解的方法。
假设
A
是一个
m * n
的矩阵,那么得到的
U
是一个
m * m
的方阵(里面的向量是正交的,
U
里面的向量
称为
左奇异向量
), 是一个
m * n
的实数对角矩阵(对角线以外的元素都是
0
,对角线上的元素称为
奇异值
),
是一个
n * n
的矩阵,里面的向量也是正交的, 里面的向量称为
右奇异向量
),从下
图片来反映几个相乘的矩阵的大小关系:
8.1
、什么是
PCA
PCA
(
Principal Components Analysis
)即主成分分析,是图像处理中经常用到的降维方法。它不仅仅
是对高维数据进行降维,更重要的是经过降维去除了噪声,发现了数据中的模式规律。
PCA
把原先的
n
个特征用数目更少的
m
个特征取代,新特征是旧特征的线性组合,这些线性组合最大化样本方差,尽量
使新的
m
个特征互不相关。
9
、
SVD
进行矩阵求逆
9.1
、
SVD
求逆矩阵原理
在矩阵求逆过程中,矩阵通过
SVD
转换到正交空间。不同得奇异值和奇异值向量代表了矩阵中不同的线
性无关
(或独立)项。对矩阵进行
SVD
分解,形式如下所示:
奇异值矩阵为: