程序员的数学--线性代数

1 、向量是什么
1.1 、向量的定义
在数学中, 向量 (也称为欧几里得向量、几何向量、矢量),指具有 大小 方向 的量。它可以形象化地
表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做
数量 (物理学中称标量),数量(或标量)只有大小,没有方向。
1.2 、向量的表示
向量的记法:印刷体记作粗体的字母(如 a,b,u,v ),书写时在字母顶上加一小箭头 '' '' 。如果给定向量
的起点( A )和终点( B ),可将向量记作
。实际上向量有多种记法,可以用元组表示一个向量,
。在线性代数中, n 元向量可以用 n×1 矩阵表示,如:
我们就可以把这多维度的向量想成一个立体的空间
向量的几何意义就是空间中的点,物理意义就是速度或者力这样的矢量。
向量的分量我们称之为维度, n 维向量集合的全体就构成了 n 维欧式空间,一个 n 维向量其实就是一个
n 维欧式空间的一个点。
2 、行向量与列向量
行向量 在线性代数中,是一个
的矩阵,即矩阵由一个含有 n 个元素的行所组成即行向量。行向量
转置 是一个 列向量 ,反之亦然。
行向量示例:
进行运算
9 、逆矩阵
9.1 、逆矩阵定义
矩阵有 AB 云散,但是没有 A/B 这么一说,只有逆矩阵。
逆矩阵怎么定义的?
假设有个矩阵 A ,注意它一定是方阵(必须是方阵),乘以矩阵 B 等于单位矩阵
或者
那么我们称这里的 B A 的右逆矩阵,和左逆矩阵。
有个很重要的结论就是,如果这样的 B 存在的话,它的左逆和右逆一定相等,统称为 A 的逆矩阵
。则:
9.2 、逆矩阵作用
矩阵求逆有什么用呢?它可以帮助我们解线性方程组,比如
。两边同时乘以 X 的逆:
设 是 n 阶方阵,如果存在数 和非零 n 列向量
,使得
成立,则称 是矩阵 的一个
特征值 (eigenvalue) , 是特征值 对应的特征向量( eigenvector ) 。
矩阵 对向量 进行变换,这个变换的特殊之处是当它作用在特征向量 上的时候, 只发生了缩放
变换,它的方向并没有改变,并没有旋转。
观察发现, 和
在同一条直线上,只是长度不同,此时我们称 是 的特征向量,而
的长度是
长度的 倍, 就是特征值。
如果 n 阶方阵 是满秩矩阵,那么矩阵 有 n 个不同的特征值和特征向量。
2.2 、特征值分解意义
一个矩阵其实就是一个 线性变换 ,因为一个矩阵乘以一个向量后得到的向量,其实就相当于将这个
向量进行了线性变换。
  当矩阵是高维的情况下,那么这个矩阵就是高维空间下的一个线性变换,这个线性变化可能没法通
过图片来表
示,但是可以想象,这个变换也同样有很多的变换方向,我们通过特征值分解得到的前 N 大特征向量,
那么就对
应了这个矩阵最主要的 N 个变化方向。我们利用这前 N 个变化方向,就可以近似表达这个矩阵(变
换)。也就是
说的: 提取 这个矩阵 最重要 的特征。
总结一下,特征值分解可以得到特征值与特征向量,特征值 大小 表示的是这个特征到底有多 重要
而特征向量表示这个特征 是什么 ,可以将每一个特征向量理解为一个线性的子空间,我们可以利用这些
线性的子空间干很多的事情。
  不过,特征值分解也有很多的 限制 ,比如说变换的矩阵必须是 方阵
4 、奇异值分解( SVD
4.1 、什么是奇异值分解
特征值分解是一个提取矩阵特征很不错的方法,但是它 只适用于方阵 。而在现实的世界中,我们看到的
大部分矩阵都不是方阵,比如说有 m 个学生,每个学生有 n 科成绩,这样形成的一个 m * n 的矩阵就
可能不是方阵,我们怎样才能像描述特征值一样描述这样一般矩阵呢的重要特征呢?奇异值分解就是用
来干这个事的,奇异值分解是一个能适用于任意的矩阵的一种分解的方法。
假设 A 是一个 m * n 的矩阵,那么得到的 U 是一个 m * m 的方阵(里面的向量是正交的, U 里面的向量
称为 左奇异向量 ), 是一个 m * n 的实数对角矩阵(对角线以外的元素都是 0 ,对角线上的元素称为
奇异值 ),
是一个 n * n 的矩阵,里面的向量也是正交的, 里面的向量称为 右奇异向量 ),从下
图片来反映几个相乘的矩阵的大小关系:
8.1 、什么是 PCA
PCA Principal Components Analysis )即主成分分析,是图像处理中经常用到的降维方法。它不仅仅
是对高维数据进行降维,更重要的是经过降维去除了噪声,发现了数据中的模式规律。 PCA 把原先的 n
个特征用数目更少的 m 个特征取代,新特征是旧特征的线性组合,这些线性组合最大化样本方差,尽量
使新的 m 个特征互不相关。
9 SVD 进行矩阵求逆
9.1 SVD 求逆矩阵原理
在矩阵求逆过程中,矩阵通过 SVD 转换到正交空间。不同得奇异值和奇异值向量代表了矩阵中不同的线
性无关
(或独立)项。对矩阵进行 SVD 分解,形式如下所示:
奇异值矩阵为:
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值