空难数据分析例子

本项目基于Kaggle的1908年至今的空难数据集进行分析,内容包括:每年空难数量统计、机上乘客数量、生还与遇难人数对比,以及航空公司和机型的空难次数排名。同时,利用seaborn和bokeh库进行了数据可视化,展示了空难数与年份的关系以及乘客数量、遇难数与年份的分布,并进行了top n的航空公司和机型分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据集:Kaggle上的1908年收集的公开数据集

项目任务:

  • 每年空难数分析
  • 机上乘客数量
  • 生还数、遇难数
    • 哪些航空公司空难数最多?
    • 哪些机型空难数最多?
# -*-coding: utf-8 -*-
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from bokeh.io import output_notebook, output_file, show
from bokeh.charts import Bar,TimeSeries
from bokeh.layouts import column
from math import pi
- 查看数据信息
data_path = './dataset/Airplane_Crashes_and_Fatalities_Since_1908.csv'
df_data = pd.read_csv(data_path)
print u'数据集基本信息:'
print df_data.info()
数据集基本信息: RangeIndex: 5268 entries, 0 to 5267 Data columns (total 13 columns): Date 5268 non-null object Time 3049 non-null object Location 5248 non-null object Operator 5250 non-null object Flight # 1069 non-null object Route 3562 non-null object Type 5241 non-null object Registration 4933 non-null object cn/In 4040 non-null object Aboard 5246 non-null float64 Fatalities 5256 non-null float64 Ground 5246 non-null float64 Summary 4878 non-null object dtypes: float64(3), object(10) memory usage: 535.1+ KB None
print u'数据集有%i行,%i列' %(df_data.shape[0], df_data.shape[1])
数据集有5268行,13列
print u'数据预览:'
df_data.head()
数据预览:
Date Time Location Operator Flight # Route Type Registration cn/In Aboard Fatalities Ground Summary
0 09/17/1908 17:18 Fort Myer, Virginia Military - U.S. Army NaN Demonstration Wright Flyer III NaN 1 2.0 1.0 0.0 Durin
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值