pytorch模型从训练到LibTorch部署(标贝科技)

本文介绍了如何从安装PyTorch和LibTorch开始,详细讲解PyTorch模型的训练,转化成Torch Script,以及在C++环境中加载和运行模型的过程。通过Tracing和Annotation两种方法将PyTorch模型转换为Torch Script,以便于C++部署。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

标贝科技 https://ai.data-baker.com/#/?source=qwer12

填写邀请码fwwqgs,每日免费调用量还可以翻倍
在这里插入图片描述
在这里插入图片描述

1、pytorch和libtorch安装(标贝科技)

PyTorch 是Torch7 团队开发的,从它的名字就可以看出,其与Torch 的不同之处在于PyTorch 使用了Python 作为开发语言。所谓“Python first”,同样说明它是一个以Python 优先的深度学习框架,不仅能够实现强大的GPU 加速,同时还支持动态神经网络,这是现在很多主流框架比如Tensorflow 等都不支持的。
  PyTorch 既可以看做加入了GPU 支持的numpy,同时也可以看成一个拥有自动求导功能的强大的深度神经网络,除了Facebook 之外,它还已经被Twitter、CMU 和Salesforce 等机构采用。
pytorch是一个强大的机器学习库,其中集成了很多方法,但从python本身角度讲,它的速度还不够快,虽然对于许多需要动态性和易迭代性的场景来说,Python是一种合适且首选的语言,但在同样的情况下,Python的这些特性恰恰是不利的。它常常应用于生产环境,这是一个低延迟和有严格部署要求的领域,一般选择C++。

1)安装pytorch

两种方式安装pytorch:根据实际cuda版本和需求安装对应版本pytorch,这里安装的是1.5.0版本。

a.查看cuda版本

cat /usr/local/cuda/version.txt
在这里插入图片描述

得到cuda版本,安装合适版本的pytorch。

b.使用pip安装
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值