2005年,宋宽在马里兰大学完成了博士开题,他的导师John R G Townshend(马里兰大学行为与社会科学院院长)请吃饭以作庆祝。吃饭时闲聊,宋宽问导师夫妇从英国辗转到美国,取得了诸多成就,两个孩子从小耳濡目染,肯定可以学到很多东西。可导师却马上摇头,“no, you don't teach your kids. you learn from them. you grow up with them.”这个回答让宋宽颇感意外,导师夫妇的学术成就斐然,可即使面对自己的孩子,也保持着谦逊的学习态度。这段对话对宋宽的冲击很大,此时他还不确定导师是谦虚还是真诚。
宋宽博士与John R G Townshend教授合影
让他体味深刻的是回国后来自后浪的冲击。宋宽本科于北京大学城市与环境学系获得环境科学学士学位,从中国经济研究中心获得经济学双学士,毕业后前往美国深造,先后在俄亥俄州立大学获得遥感测绘硕士、在美国马里兰大学地理系和高级计算机研究院(UMIACS)联合培养获得博士学位,曾就职于美国大气海洋局,回国后加盟阿里云。面对国内充满活力的青年数据科学从业者,宋宽喟叹:“在阿里云天池工作,遇见不少年轻有冲劲有思想且技术拔群的算法选手,可谓四海英豪济济一堂。我当时想,在这些年轻人面前,你还装什么大佬?学都来不及!”在阿里云期间,宋宽多次担任天池算法大赛的赛题负责人及评委,后作为首席科学家加盟农业大数据领域的独角兽企业佳格天地。
19年初,佳格天地在DataCastle数据城堡上举办了一场命题为“地球物候的深度学习预测”的算法大赛,吸引了相关领域将近800名参赛者。3位选手从中脱颖而出,获得佳格实习机会,这是名副其实的百里挑一。他们分别是来自中国矿业大学的计算机硕士朱强,来自南京大学的物理硕士姜文聪,以及来自电子科技大学的数学硕士曹俊年。宋宽是这场比赛赛题与数据负责人,三位数据科学领域的新秀在获奖的同时,也获得了佳格的实习offer。
佳格天地“地球物候的深度学习预测”算法大赛
时间跨度20个月,在2020这个变化与机遇并存的夏末,DC邀请宋宽博士与以上3位数据小咖,复盘他们从数据竞赛小白到大神的心路历程,聊聊对数据科学的心得与看法,希冀能给初涉数据科学领域的青年学子一些实用的建议。
1、聊经验
DC:什么样的竞赛对你们更有吸引力?
文聪:第一个当然是奖励了。第二个是比赛平台和出题方的专业程度。第三是自己的资源和能力。当初选择参与地球物候大赛时,先是因为这场比赛能够提供长期实习机会,这对于当时正在寻找实习工作的我来说很有吸引力。其次我查了下,主办方佳格天地做气象卫星大数据很权威。最后是硬件资源,当时我用来打比赛的只有一台笔记本电脑,而这场比赛相对来说对硬件要求没那么高。三者综合起来考量,我就选择了这场比赛。
俊年:我在报名时,主要考虑的是边学习边比赛,如果能取得好名次就更好了,所以选择赛题时也优先考虑与专业方向有关的,和数据图像相关的深度学习比赛。另一方面,会考虑出题方的专业度,很多比赛比着比着会改数据、改需求,很不好。但像佳格的比赛,在比赛时会给到baseline,这说明出题人充分验证过赛题。通过学习baseline,即使没能取得好成绩,我也能学到新东西。最后当然也是奖励了,去年三四月份我在找实习,这个比赛能够给优胜者提供实习机会,对我来说很适合。
朱强:我其实就打过这一场比赛,当时我读研究生在做类似的课题,在网上搜了下,发现这样一个比赛,和我的专业很契合,于是就参赛试试。
DC:可以分享给数据竞赛的参赛者们一些有价值的比赛经验吗?
文聪:<