LeetCode 329. 矩阵中的最长递增路径

LeetCode 329. 矩阵中的最长递增路径

题目描述

给定一个 m x n 整数矩阵 matrix ,找出其中 最长递增路径 的长度。
对于每个单元格,你可以往上,下,左,右四个方向移动。 你 不能 在 对角线 方向上移动或移动到 边界外(即不允许环绕)。
  示例 1:
  输入:matrix = [[9,9,4],[6,6,8],[2,1,1]]
  输出:4
  解释:最长递增路径为 [1, 2, 6, 9]。

来源:力扣(LeetCode)
链接:
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

LeetCode 329. 矩阵中的最长递增路径
提示:

m == matrix.length
n == matrix[i].length
1 <= m, n <= 200
0 <= matrix[i][j] <= 231 - 1

一、解题关键词


二、解题报告

1.思路分析

2.时间复杂度

3.代码示例

class Solution {
   
    public int[][] dirs = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
    public int rows, cols;
    public int longestIncreasingPath(int[][] matrix) {
        if (matrix == null || matrix.length == 0 || matrix[0].length == 0) {
            return 0;
        }
        //dfs
         rows = matrix.length;
         cols = matrix[0].length;

        int[][] memo = new int[rows][cols];
        int ans = 0;
        for (int i = 0; i < rows; i++) {
            for (int j = 0; j < cols; j++) {
                //拆分 处理大逻辑,当前位置 比较四个方向 存放结果
                ans = Math.max(ans, dfs(matrix, i, j, memo));
            }
        }
        return ans;
    }

    int dfs(int[][] matrix, int row, int col, int[][] memo) {
        //记忆化搜索
        if (memo[row][col] != 0) {
            return memo[row][col];
        }
        ++memo[row][col];
        for (int[] dir : dirs) {
            int newRow = row + dir[0], newCol = col + dir[1];
            if (newRow >= 0 && newRow < rows && newCol >= 0 && newCol < cols && matrix[newRow][newCol] > matrix[row][col]) {
                memo[row][col] = Math.max(memo[row][col], dfs(matrix, newRow, newCol, memo) + 1);
            }
        }
        return memo[row][col];
    }
}

2.知识点

从当前坐标向四个方向走,在当前位置记下能到达的最大值

总结

相同题目

xxx

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大涛小先生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值