LeetCode 329. 矩阵中的最长递增路径
题目描述
给定一个 m x n 整数矩阵 matrix ,找出其中 最长递增路径 的长度。
对于每个单元格,你可以往上,下,左,右四个方向移动。 你 不能 在 对角线 方向上移动或移动到 边界外(即不允许环绕)。
示例 1:
输入:matrix = [[9,9,4],[6,6,8],[2,1,1]]
输出:4
解释:最长递增路径为 [1, 2, 6, 9]。
来源:力扣(LeetCode)
链接:
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
m == matrix.length
n == matrix[i].length
1 <= m, n <= 200
0 <= matrix[i][j] <= 231 - 1
一、解题关键词
二、解题报告
1.思路分析
2.时间复杂度
3.代码示例
class Solution {
public int[][] dirs = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
public int rows, cols;
public int longestIncreasingPath(int[][] matrix) {
if (matrix == null || matrix.length == 0 || matrix[0].length == 0) {
return 0;
}
//dfs
rows = matrix.length;
cols = matrix[0].length;
int[][] memo = new int[rows][cols];
int ans = 0;
for (int i = 0; i < rows; i++) {
for (int j = 0; j < cols; j++) {
//拆分 处理大逻辑,当前位置 比较四个方向 存放结果
ans = Math.max(ans, dfs(matrix, i, j, memo));
}
}
return ans;
}
int dfs(int[][] matrix, int row, int col, int[][] memo) {
//记忆化搜索
if (memo[row][col] != 0) {
return memo[row][col];
}
++memo[row][col];
for (int[] dir : dirs) {
int newRow = row + dir[0], newCol = col + dir[1];
if (newRow >= 0 && newRow < rows && newCol >= 0 && newCol < cols && matrix[newRow][newCol] > matrix[row][col]) {
memo[row][col] = Math.max(memo[row][col], dfs(matrix, newRow, newCol, memo) + 1);
}
}
return memo[row][col];
}
}
2.知识点
从当前坐标向四个方向走,在当前位置记下能到达的最大值