自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Datawhale

一个专注于AI领域的开源组织,汇聚了众多顶尖院校和知名企业的优秀学习者,聚集了一群有开源精神和探索精神的团队成员。愿景-for the learner,和学习者一起成长。

  • 博客(2930)
  • 资源 (5)
  • 收藏
  • 关注

原创 Datawhale团队第三期录取名单!

Datawhale团队公示:Datawhale 组织成员Datawhale已经成立一年半了,从一开始的12个人,学习互助,到提议建立开源组织,做更多开源的事情,帮助更多学习者,也促进...

2020-09-23 21:17:58 2796

转载 给Clawdbot接入上万专业数据,放进飞书后,实现7×24小时监听股票!

真正让 Clawdbot 有用的,是接入专业数据,比如同花顺、Wind 金融、同花顺,Amazon,arXiv,Pubmed,Alpha Advantage。它可以 7×24 小时驻守在你的平台上,能监控市场、能回复消息、能提醒日常、能操作文件、能管理邮件,总之,就是你可以让它 7×24 小时替你干活儿。没领到的,也可以添加 Teamo 官方的 Clawdbot 飞书体验群,成为朋友圈里第一个用上 Clawdbot 的人。今天,Teamo 平台上线了超级强化版本的 Clawdbot,狠狠的打通了。

2026-01-29 22:10:14 32

转载 新华社发布:中国AI,最新趋势来了!

AI算力就像一支超级工程兵团:GPU等计算芯片是执行硬核任务的“重武器”,高速网络是让各兵种高效协同的“信息高速公路”,存储系统是随时调用的“战略物资库”,软件框架与算法则是统筹全局的“调度指挥中心”。“我们希望未来算力就像自来水,打开能用、关上会停,不用关心它从哪里来。工信部赛迪院信软所所长韩健认为,数据价值密度不均、数据标准参差不齐、数据流通壁垒重重,导致大量数据“存而不用”,不同部门、不同企业的数据像一个个“孤岛”,“不敢传”(怕泄密)、“不愿传”(怕丧失竞争优势)、“不会传”(缺乏技术标准)。

2026-01-29 12:31:07 17

原创 DeepSeek今年的两个重大更新,一篇详细的总结来了!

OCR2 彻底抛弃了 CLIP 等传统 ViT 骨干,转用 Qwen2-0.5B 作为视觉编码器(DeepEncoder V2),并引入 Visual Causal Flow 机制:模型先全局理解图像布局,再根据语义内容动态决定“先看哪块、再看哪块”(类似人类阅读报纸时跳过广告、优先读标题、正文、表格的顺序),而非从左上到右下死板扫描。这是一个传统的“非因果(Non-causal)”架构,视觉Token 之间通常是全向交互,且处理顺序往往是固定的(如从左到右、从上到下的光栅扫描顺序)。

2026-01-28 22:49:50 298

原创 9.9包月+OpenCode教程,开源版编程神器来了!

首先需要在相应的模型服务平台注册账号,并获取 API Key。还兼容了 Skill、MCP 等机制,自带精选过的 MCP,并支持完整的 LSP,十分强大。使用的是国内平替方舟Coding Plan,集成了最新版主流国产编程模型,实现模型自由。在 OpenCode 的使用中,oh-my-opencode 插件是不可或缺的。既能享受OpeCode的开源自由,又能以极低成本使用顶级编程模型。,可以在任意终端上运行,在任意 IDE 中使用,能理解。,并且将 OpenCode 接入各种国内主流的模型。

2026-01-27 22:00:57 463

转载 大神 Karpathy发了条推文:写了20年代码,最近被AI伤了自尊。

鉴于 LLM(大语言模型)编程能力的最新提升,我和许多人一样,经历了一个极速的转变:从 11 月份的“80% 手写 + 自动补全,20% 使用 Agent”,迅速变成了。错误的类型已经变了——它们不再是简单的语法错误,而是微妙的概念性错误,就像是一个稍微有点粗心、急躁的初级开发人员会犯的那种。它们不会管理自己的困惑,不寻求澄清,不暴露不一致性,不展示权衡(Tradeoffs),该反驳的时候不。在我看来,目前关于“不再还需要 IDE”的炒作,以及“Agent 蜂群”的炒作都言过其实了。模型绝对还是会犯错的。

2026-01-27 07:55:24 30

转载 信息量很大!印奇出任阶跃星辰董事长的首次深度访谈

然后第二,大家因为快,不管是因为对这件事的相信,还是因为对这件事的焦虑,大家在这里面其实所做的竞争强度其实都更大,甚至这个竞争强度更大也会带来很多的泡沫。这里面如果能够感知你周围的数据,这些数据也是连续的,多传感器网络的这样的数据,这些数据最终它会与这个产品本身形成一个迭代,就是你的产品的体验越来越好,量越来越大,它收集的数据会越来越多。所以就是我们不管是在智驾里面,其实刚刚讲的用真正的智驾领域的,不管是 VLA 的模型,多模态的模型还是世界模型,这些的基模都源于其实千里与阶跃的合作。

2026-01-26 23:27:17 66

原创 傅聪联合人大发布OnePiece:首个全面落地推理能力的工业级生成式搜索框架

换言之,每一次请求的生成过程本质上都是“一次性完成”的,而不是语言模型那种“逐步生成”的链式过程。在以 GPT-o 为代表的大模型体系中,“推理”能力之所以强大,核心在于 test-time scaling law:模型在推理阶段通过更长链路的计算、更深的思考过程产出更高质量的答案。Candidate Item Set(CIS):潜在目标候选物品的集合,这个是ranking模式下特有的,也是相对于召回模式的优势所在,ranking模式下,候选物品对模型可见,可提供更多上下文信息。

2026-01-26 12:21:30 1002

原创 Datawhale限量版日历发布!AI浪潮下看到具体的人和事

真正的改变从不只发生在浪潮的表面,而在浪潮之下,那些被光照亮的具体的人,和那些因他们而真实改变的事。未来,不是被浪潮裹挟至未知的彼岸,而是由无数具体的星火,共同照亮的航道。每一页不只是一个日子,也是和365个真实的人交朋友。因此,Datawhale制作了这本AI日历——,如何以自身为锚点,他们在AI时代的真切感受。也致每一位在浪潮中依然具体、依然闪耀的你。在浪潮中看见具体,在变革中珍视微光。然而,Datawhale坚信,

2026-01-25 22:02:38 137

转载 刚刚,Anthropic首次公开:Claude Skills的完整思考!

文件是一个通用的原语,适用于你已有的东西。K-Dense、Browserbase、Notion正在创建技能,将他们的服务直接集成,在特定领域扩展Claude的能力,同时保持技能格式的简单性。随着这个生态系统的发展,社区中其他人构建的技能可以使你的智能体更有用、更可靠、更有能力——无论他们使用哪个AI平台。这种三层方法意味着你可以为智能体配备数百项技能而不会压垮其上下文窗口——元数据使用约50个token,完整的SKILL.md文件约500个token,参考文件2000+个token,仅在特别需要时加载。

2026-01-24 22:58:17 40

转载 Datawhale上报纸头条了!

而Datawhale则形成了“学练赛证会”体系的完整学习闭环:学习最新技术、实践真实项目、参加产业赛事、获得能力认证、参与行业交流,既大大缩短了周期,又加速了高校和产业链接,帮助高校和企业构建可持续的人才生态。Datawhale的核心价值是构建“连接”:连接高校与产业,连接学习者与贡献者,连接知识与实践。以与AMD的合作为例。今天,他创立的Datawhale已经成为GitHub全球排名前50的开源组织,与阿里、字节、AMD等数百家科技巨头合作,连接全球4000多所高校,被誉为“AI领域的黄埔军校”。

2026-01-23 21:14:44 36

原创 年轻人的第一场黑客松,联合12所顶尖学府的环球黑客松开放报名!

北京大学、复旦大学、哈尔滨工业大学、南京大学、清华大学深圳国际研究生院、上海交通大学、同济大学、西安交通大学、香港大学、新加坡国立大学、浙江大学、中国科学技术大学。是深耕算法的极客,还是心怀热诚的跨界玩家,只要你相信开源的力量,这里就是你的主场。聚焦乡村教育、助老服务、儿童关照等公益领域的真实需求,推动 AI 技术的普惠性落地。探索 AI 在娱乐、艺术、陪伴等场景的创新应用,打造有情感连接沉浸式的用户体验,让科技成为真正懂你的“朋友”或精神投射。跳出校园的方寸之地,在更广阔的社区中,与全球开发者并肩竞技。

2026-01-22 23:01:06 341

转载 Coze Skills发布,一篇保姆级的Skills解读来了!

出现之前是很复杂的,这也是为什么 Claude Skill 只在小范围内火热,扣子 Skills 把这么一套复杂的流程极简化了,秘密就在于扣子编程,它把技能/Skill 的创建也做成了类似于 Agent 的形式。你以为只是习惯,但当它能被反复调用、能被别人用、还能持续迭代的时候,它就开始有产品的味道了。这是刚刚提到的“非计算机或者统计背景用户的数据分析Skill”,它最核心的就是SKILL.md这个文件,它其实就是一个操作手册,定义了从输入到输出的整体流程,每一步的操作都被确定了下来。

2026-01-21 22:09:26 182

转载 死了么?还没!听我们说说Eigent产品背后的故事

2024年4月,我们提出了Agent Workspace的概念,多智能体每个Agent可以有不同的Workspace,比如设计Agent可以有Figma,Coding Agent可以有Vscode和Terminal,Product Manager Agent 可以有搜索引擎和文档等等。当时,团队整体是一种兴奋的摩拳擦掌的氛围。我们一开始的发布没有想清楚产品第一波面向的群体该是谁,加上产品的不稳定迫使我们进入沉寂期,我们需要重新思考产品的定位,到底应该服务什么样的客户,最后决定先聚焦b端和开发者。

2026-01-19 22:56:48 68

原创 年度好用的AIGC工具推荐,看这一篇就够了

现在确实借助AI的力量,我们可以快速的学会一个领域的东西、快速的试错,而在“走”的过程,才能切身体会每一种技术的魅力、每一个思考问题的背后逻辑。以下总结一些直觉性的经验(仅供参考):即梦(表演细腻)、可灵(清晰、大运镜场景)、Sora2(快速出demo场景)、Vidu(特效、动画场景)、海螺(打斗场景)、Higgsfield(特效场景)、Runway(P视频场景,不过现在有可灵O1效果很好)....“样样通、样样松”也并非一定是不好的,而是学会利用AI,那么AI就是能够在我们自身“松”的地方“深入”下去。

2026-01-18 23:00:34 715

原创 告别手动整理!吴恩达新课,教你用AI一键提取文档信息

—无论是个人笔记本电脑中的PDF、网络上的资料,还是企业云存储中的报告与记录。本课程正是为解决这一问题而生,它将系统性地讲解如何将复杂文档转换为语言模型可直接处理的规范化文本,并完整保留其结构与语义信息。本课程正是为解决这一问题而生,它将系统性地讲解如何将复杂文档转换为语言模型可直接处理的规范化文本,并完整保留其结构与语义信息。为此,课程重点引入了智能文档提取(ADE) 的先进范式。如果你正在寻找将文档数据转化为AI可用资源的方法,或希望在企业中部署智能文档处理系统,那么这门课程将是你的理想选择。

2026-01-17 22:56:02 322

转载 Anthropic万字长文:一篇AI Agent评估体系的详细解析!

对于更复杂的多轮评估,编码智能体接收工具、任务(在此案例中是构建MCP服务器)和环境,执行"智能体循环"(工具调用和推理),并用实现更新环境。每个任务都有自己的成功率——一个任务可能是90%,另一个任务可能是50%——而在一次评估运行中通过的任务可能在下次失败。有时,我们想要测量的是智能体。τ-Bench与τ2-Bench模拟多轮交互,一模型扮用户,一模型扮智能体,评任务完成与交互质量,覆盖零售、航空等场景。预订航班的智能体可能在记录结束时说"您的航班已预订",但结果是在环境的SQL数据库中是否存在预订。

2026-01-16 22:55:52 67

转载 YOLO26发布:下一代视觉模型来了!

与 YOLO11 相比,YOLO26 的 Nano 版本在 CPU 推理场景下最高可实现 43% 的性能提升,成为目前边缘端和基于 CPU 部署场景中速度与精度兼顾的领先目标检测模型之一。尽管这一方法有效,但 DFL 增加了模型复杂度,且对回归范围设置了固定限制,给模型导出和部署带来挑战,尤其在边缘设备和低功耗硬件上表现更为明显。从视觉驱动的摄像头,到计算机视觉赋能的机器人,再到边缘端的微型处理芯片,计算机视觉和 AI 正越来越多地部署在设备本地,以实现实时推理。视觉 AI 正迅速向边缘端迁移。

2026-01-15 23:01:08 82

转载 Cursor内部分享:同时运行数百个Agent写代码的经验!

在每个周期结束时,会有一个评审 Agent 判断是否继续,然后下一轮迭代会从干净的初始状态重新开始。这样基本解决了我们的协同问题,并且让我们可以扩展到非常大的项目,而不会让任何单个 Agent 陷入视野过于狭窄的状态。一开始我们为质量控制和冲突解决设计了一个集成者角色,但后来发现,它制造的瓶颈多于解决的问题。他们如何在单个项目上同时运行数百个并发 Agent、协调它们的工作,并观察它们写出超过一百万行代码和数万亿个 token,以及从中获得的经验。这个系统并不是绝对高效,但它的效果远超我们的预期。

2026-01-15 23:01:08 153

转载 浪潮信息和Datawhale成功举办「AI+X」高校人才培养研讨会!

他指出,AI+X人才培养的挑战在于打破学科与产业边界,而南京作为江苏高教与科创高地,应充分发挥资源优势,搭建跨领域平台,推动AI融入不同学科的教学与实践,助力传统专业焕发新生。此前,东南大学、浪潮信息与Datawhale开源学习社区共同开展的“大模型应用开发实训营”,已为这一范式提供了先行实践——通过系统化的实践课程教学,154名硕博生从0到1搭建起大模型应用,最终孵化出30余项智能体作品,实现了从AI通识认知、智能体工作流构建、RAG技术实践到大模型微调的全链路能力提升。

2026-01-15 13:08:52 30

原创 再也不担心论文!一键生成汇报PPT和科研绘图

在此基础上,系统将自动生成合适的版面布局,并依托 PaddleOCR 技术对文字层进行重建,确保生成的内容并非简单的截图,而是完全可编辑的文本。这一过程将不可编辑的 PDF 还原为可编辑的 PPTX 文件,不仅解决了版面错乱的问题,更让用户能够对每一个细粒度的图文元素进行二次修改。等更多的多模态功能,帮助用户缩短准备Presentation的时间。上传论文 PDF 文件/图片/文本,根据选择的绘图难度(简单/中等/困难),此功能可以自动提取模型架构信息,生成对应复杂度的可编辑 PPTX 格式模型架构图。

2026-01-14 23:02:17 592

原创 面向本科生、研究生的AI冬令营来了!

推荐设计、经管、艺术、人工智能、计算机、智能科学与技术、软件工程、大数据、网络工程、自动化、通信、电子信息、数字媒体技术、电子信息工程、数据科学、统计、数学、物理等相关专业和行业。由 Datawhale 主办,涵盖AIGC、具身智能、AI Coding等热门技术方向。,提供真实场景中的学习机会,帮助学习者提升专业能力和就业竞争力。首期冬令营将结合最新的米兰冬奥会AIGC全球大赛。只要你对AI应用感兴趣,有热情。2026 AI冬令营全景图。2026 AI 冬令营。提供项目实践学习机会。

2026-01-13 23:06:18 175

转载 厦门大学突破:多模态模型进入“推理进化”时代,7B小模型的大逆袭

这是一个极具说服力的“控制变量”实验:两者使用完全相同的冻结底座(Qwen2.5-VL)和完全相同的执行器(SAM 3),唯一的区别在于推理机制——是线性的“试错”,还是进化的“搜索”?在面对如“找出划船需要的物体”这类功能性描述时,基线模型容易被显眼的“船”带偏,而 EVOL-SAM3 通过进化循环成功修正了注意力,精准分割出了细小的“船桨”。这并非简单的随机字符扰动,而是逻辑上的升级——例如,模型可能会将“右边的人”自动进化为“最右边穿绿衣服的男性”,从而引导搜索方向一步步逼近真相。

2026-01-13 11:58:52 61

转载 2026 CS Rankings 发布!上交、清华并列世界第一

从整体来看,中美高校与科研机构优势依旧显著。在全球 TOP 100 中,美国高校占据 46 席,中国占据 28 席。分别位列全球第 3 名和第 5 名,使中国高校在全球 TOP 5 中占据了 4 个席位。传统强校卡内基梅隆大学(CMU)首次退居并列第 3 名,但仍保持着美国高校中的最高排名。放眼全球前十,中国高校共占据 6 个席位,呈现出明显的霸榜态势。除了整体排名,CSRankings对众多热门细分方向也进行了排名。22 所中国内地高校、5 所中国香港高校以及中国科学院。中,中国高校表现格外亮眼。

2026-01-12 21:49:53 192

转载 DeepSeek R1论文更新了

图14中展示了DeepSeek-V3、DeepSeek-R1(启用与未启用风险控制系统)以及Claude-3.7-Sonnet和GPT-4o(2024-05-13)在50种语言下的表现。,DeepSeek-V3(86.5%)与DeepSeek-R1(85.9%)在50种语言中的整体安全得分接近Claude-3.7-Sonnet(88.3%)的表现。这里,DeepSeek作为「教师」模型,生成高质量、显式推理轨迹的数据,通过SFT把推理能力「蒸馏」给更小的「学生」模型,而不是让小模型再跑一遍RL。

2026-01-10 23:04:03 74

转载 上海交大高金的AI金融大赛来了!

无论你是金融经管、还是理工科背景都能找到属于自己的舞台。通过真实赛道与实战问题,连接工程判断、产品逻辑与投资视角,重新理解AI,发现未来独角兽的底层逻辑。在热度出现之前,我们该如何判断一家 AI 公司是否具备成为独角兽的潜质?四重收获:证书+奖金+入营直通机会+国际竞赛经历。所有参与先导课程、并提交符合要求报告的队伍。Datawhale认证的学习证书。进入决赛的队伍,更有机会获得。寻找 AI 时代的独角兽。其背后的商业逻辑与趋势。交大高金认证的参赛证书。、及为个人简历增色的。报名时间:2026年。

2026-01-09 16:43:37 53

转载 今天MiniMax上市,成为IPO规模最大的AI大模型公司!

正式登陆香港联交所主板。其上市表现亮眼,开盘一度冲高近。,显著点燃了港股市场对。

2026-01-09 12:30:56 95

原创 米兰冬奥会AIGC全球大赛来了!

并在洛桑、米兰、杭州多地全球巡展!参与比赛让世界看见你的热爱,让历史记住你的风采!最具奥运精神与艺术创意的作品,组成奥运首个粉丝数字艺术合集,正式进入奥林匹克博物馆展览。项目评选直通车,带着你的项目和创意来杭州一起找搭子搞事业,最高可获得。米兰冬奥会倒计时30天,阿里云携手国际奥委会开启「报名时间:2026年1月6日-2026年1月26日。通义万相,对「花样滑冰、短道速滑、高山滑。除了入驻奥林匹克博物馆的荣誉,更有。

2026-01-08 22:40:42 408

转载 今天智谱上市,成为全球大模型第一股!

智谱(股票代码:2513.HK)于2026年1月8日在港交所主板正式挂牌上市,成为"全球大模型第一股"。公司开盘报120港元,较发行价116.2港元上涨3.27%,市值达528亿港元。

2026-01-08 11:03:27 106

转载 湖南省媒报道Datawhale

而这一生态的核心载体,便是当日正式启航的“AI花猫社区”。活动汇聚中国科学院、中国工程院院士,全国顶尖高校、科研机构学者,领军企业代表及数百名青年创新者,共同探讨人工智能与工业城市深度融合的未来图景,并正式启动面向未来的AI花猫社区。花猫社区拥有的,不是凭空规划的理想蓝图,而是株洲实实在在的工业场景、迫切的技术升级需求与开放务实的政策环境。“我们构建的生态,连接了海内外3500多所高校的人才源头,也与国内外头部科技企业建立了长期的学习生态合作,”范晶晶表示,“而来到株洲,最大的不同是我们拥有了。

2026-01-06 21:54:27 32

原创 北大联合多个团队打造的数据届“PyTorch”,技术报告发布!

基于全局表格化存储、LLM 服务层、算子(Operators)、提示模板(Prompt Templates)和流水线(Pipelines)构建 PyTorch 风格的模块化架构,支持可组合、可调试、可优化的数据工作流。DataFlow-Reasoning-10K 微调 Qwen2.5-32B 后,在8个数学基准上平均得分 55.7,优于 Open-R1(54.2)和 Synthetic-1(54.0)。LLM 算子可调用本地或云端模型,非 LLM 算子则独立运行,兼顾性能与灵活性。

2026-01-06 16:52:04 761

原创 为什么大家都用RAG,这篇小白都看懂了

例如,让模型学会严格遵循某种独特的输出格式、模仿特定人物的对话风格,或者将极其复杂的指令“蒸馏”进模型权重中。,是对输入给模型的信息进行多大程度的增强。本教程的目标,就是绘制出这张描绘 RAG 全貌的清晰地图,当我们可以解构它的每一个模块、理解它的每一种可能性时,RAG 也好,LKE 也罢,这些都无关紧要。实现了检索与生成的解耦,这意味着我们可以独立优化检索组件(比如更换更好的 Embedding 模型),而不会影响到生成组件的稳定性,便于系统的长期迭代。它的生命力,正在于它的“面目全非”和“包罗万象”。

2026-01-05 22:27:05 706

转载 达摩院 x Datawhale开展首场具身智能训练营!12月在湖南大学圆满举办

12月30日举行结营仪式,通过路演展示评选优秀团队、并总结阶段成果。本次活动以“体验+实操+部署”为主线,将具身智能与机器人开发实践带入校园,有助于打通学生从“理解算法”到“动手做系统”的关键一环,提升面向真实任务的工程落地能力,同时也促进高校训练平台与开放社区资源的深度联动,推动具身智能相关人才培养与学科实践体系建设,为学校在智能机器人创新实践、科研训练与竞赛储备等方面夯实基础。者社区,联合合作伙伴与高校共同开展课程、训练营与实践项目,助力更多学习者在真实场景中提升工程能力与创新能力。

2026-01-05 15:22:18 58

转载 田渊栋的2025年终总结,关于Meta裁员的细节!

并且,在跨越阈值之后,厉害人对 AI 的加成,会高于普通人很多很多,因为普通人只会对 AI 的一两条具体产出花时间修修补补,而厉害的人在看了一些 AI 存在的问题之后,能提出较为系统性和普遍性的解决方案,结合手上的各类资源(GPU 和数据等),可以进一步让 AI 变得更强,而这种效应随着 AI 的广泛部署,会被几何级数地放大。如果大模型的训练过程没有特别大的进展,那和自动驾驶无人车一样,越往上走,有用的数据是越来越少的,进展也会越慢,最顶尖的那部分人,还能在很长时间内保有自己的护城河。

2026-01-04 22:03:05 217

转载 Claude Code创始人首次公开:我的13个使用技巧!

使用 Claude Code 并没有所谓的唯一正解:我们在构建它时就特意设计成这样,你可以按照自己喜欢的方式去使用、定制,甚至大肆改造它。这是我用过最好的编程模型。虽然它比 Sonnet 更大、更慢,但因为它更听劝(需要引导的地方少)且更擅长使用工具,从结果来看,它几乎总是比用小模型效率更高。虽然 Claude 本身生成的代码格式就很不错,但这个钩子能搞定最后 10% 的细节,避免之后在 CI(持续集成)中报错。不少人问起我是如何使用 Claude Code 的,那我就来展示一下我的设置吧。

2026-01-03 22:06:28 115

原创 我的秋招经历,大厂AI岗位面试真题总结

5. 在RLHF的第三阶段,PPO是最主流的强化学习算法。因此,本文中的问题深度和广度都围绕这些岗位的要求展开,内容涵盖了从 LLM/VLM 核心理论,到 RAG/Agent 应用开发,再到 RLHF 对齐技术和模型/Agent 评估等全链路技术栈。3. 像 LLaVA 或 MiniGPT-4 这样的模型是如何将一个预训练好的视觉编码器(Vision Encoder)和一个大语言模型(LLM)连接起来的?6. 具身智能(Embodied AI),即 LLM 与机器人的结合,被认为是 AI 的下一个浪潮。

2026-01-02 22:42:20 859

原创 《Easy-Vibe》项目正式发布,一起学习真正的Vibe Coding!

easy-vibe》的初心是让写程序的能力赋予每一个人。我们希望消除技术傲慢,让更多人能够在不设门槛的前提下进入原生 AI 开发世界。越来越多的人已经开始用 AI 写代码,但做出来的东西往往还停留在玩具层面。在这种范式下,你一个人就可以是前后端开发、AI 算法开发、产品经理,成为“一人军队”。缩短从“点子”到“产品”的距离,让你的想法一步步落地为“可见的产品”。“现实的万有引力无时不在,但我们仍然可以选择去创造美丽的事情!,在这一阶段,你将补齐那些容易被忽视却极其关键的基础能力,

2026-01-01 22:36:38 447

转载 刚刚,梁文锋署名,DeepSeek元旦新论文发布!

此外,为了专门研究 Token 规模的影响,他们另外训练了一个独立的 3B 模型,该模型在一个固定的 1T Token 的语料库上进行训练。简单来说,DeepSeek 提出的 mHC 通过将传统 Transformer 的单一残差流扩展为多流并行架构,并利用 Sinkhorn-Knopp 算法将连接矩阵约束在双拟随机矩阵流形上,成功解决了超连接(HC)在大规模训练中因破坏恒等映射属性而导致的数值不稳定和信号爆炸问题。在 n=4 的扩展倍率下,仅增加了 6.7% 的训练时间开销,却换来了显著的性能提升。

2026-01-01 17:20:19 277

转载 斯坦福吴恩达的2025年度总结来了!

而且,说实话,我觉得“做东西”本身真的很有趣,也希望你能体会到这种乐趣!我会把读论文的优先级排在课程和实践之后,但如果你有机会提升阅读论文的能力,我仍然强烈建议你这样做。除非你已经身处一个经验丰富的 AI 开发者社群中,否则在没有理解 AI 基础的情况下贸然动手,很容易导致你重复发明轮子,或者更糟糕的是,把轮子重新发明得一团糟。在这精彩绝伦的一年的结尾,斯坦福大学计算机科学客座教授,前百度 AI 负责人,前谷歌大脑负责人吴恩达老师,发表了今年的保留节目:一封信,和一篇 2025 的人工智能领域年度总结。

2025-12-31 22:01:27 95

原创 Datawhale七周年,生日快乐!

回顾第七年,这些重要时刻固然令人振奋,背后是开源贡献者的智慧,是教程贡献者细致入微的教程,是鲸英助教每一次耐心的解答,是各位高校组织者奔波的身影,也是每一位在“Whale应用吐槽会”和“鲸英有约”中勇敢分享的你的笑容。飞桨PaddlePaddle星河社区、MiniMax、智谱、零一万物、阶跃星辰、扣子、蚂蚁百灵、讯飞开放平台、AI大学堂、GitLink、面壁智能、Dify、智元机器人、浙江大学启真交叉创新创业实验室、滴滴出行等。所谓“闪光”,并非遥不可及的星辰,而是每一个你我用热情、专业与善意点亮的灯火。

2025-12-30 23:58:39 974

Airbnb 新用户的民宿预定预测-数据集

Airbnb 新用户的民宿预定预测 kaggle比赛完整数据集 主要包含5个csv文件

2018-06-20

Python数据分析与挖掘实战(高清带标签+源代码)

10余位数据挖掘领域资深专家和科研人员,10余年大数据挖掘咨询与实施经验结晶。从数据挖掘的应用出发,以电力、航空、医疗、互联网、生产制造以及公共服务等行业真实案例为主线,深入浅出介绍Python数据挖掘建模过程,实践性极强。 本书共15章,分两个部分:基础篇、实战篇。基础篇介绍了数据挖掘的基本原理,实战篇介绍了一个个真实案例,通过对案例深入浅出的剖析,使读者在不知不觉中通过案例实践获得数据挖掘项目经验,同时快速领悟看似难懂的数据挖掘理论。读者在阅读过程中,应充分利用随书配套的案例建模数据,借助相关的数据挖掘建模工具,通过上机实验,以快速理解相关知识与理论。 基础篇(第1~5章),第1章的主要内容是数据挖掘概述;第2章对本书所用到的数据挖掘建模工具Python语言进行了简明扼要的说明;第3章、第4章、第5章对数据挖掘的建模过程,包括数据探索、数据预处理及挖掘建模的常用算法与原理进行了介绍。 实战篇(第6~15章),重点对数据挖掘技术在电力、航空、医疗、互联网、生产制造以及公共服务等行业的应用进行了分析。在案例结构组织上,本书是按照先介绍案例背景与挖掘目标,再阐述分析方法与过程,最后完成模型构建的顺序进行的,在建模过程的关键环节,穿插程序实现代码。最后通过上机实践,加深读者对数据挖掘技术在案例应用中的理解。

2018-06-20

机器学习_数学基础_精选教材(概率,线代,微积分)

普林斯顿微积分读本高清中文版 概率论与数理统计 - 陈希孺 MIT线性代数导论_Introduction to Linear Algebra, 4th 每一本都是经典之作,和国内同济版相比,通俗易懂,易于自学。 奠定机器学习数学基础,三本教材就够了!!!

2018-08-09

用Python解决数据结构与算法问题

一本关于python版本极佳的数据结构和算法相关教材 而掌握算法和数据结构是拿到好offer必备的核心技能!

2018-08-22

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除