自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Datawhale

一个专注于AI领域的开源组织,汇聚了众多顶尖院校和知名企业的优秀学习者,聚集了一群有开源精神和探索精神的团队成员。愿景-for the learner,和学习者一起成长。

  • 博客(2544)
  • 资源 (5)
  • 收藏
  • 关注

原创 Datawhale团队第三期录取名单!

Datawhale团队公示:Datawhale 组织成员Datawhale已经成立一年半了,从一开始的12个人,学习互助,到提议建立开源组织,做更多开源的事情,帮助更多学习者,也促进...

2020-09-23 21:17:58 2597

转载 蚂蚁集团全球招募顶尖 AI人才

⬇️点击阅读全文,一键投递简历。Datawhale分享。

2025-04-25 22:08:44 75

原创 扣子空间+自定义MCP,我的学习搭子来了!(附邀请码)

以Datawhale AI春训营中的赛事项目学习为例,最煎熬的就是不理解背景了,赛题的背景决定接下来的学习目标和重心。这里扣子空间有一个独特的亮点,它能够与飞书文档、飞书多维表格打通,这是扣子的生态优势。在这一步,思路和策略是最重要的,也是比赛上分的关键。常用的 MCP 扩展如下所示。规划模式下,当我们对生成后的结果提出修改意见时,AI会先跟我们确认思路是否正确,然后再进行下一步行动,具备了一定的主动性。,我将从0到1用扣子空间,创建我的学习搭子:理需求,打比赛、写代码、上分思路,通通让我的搭子帮我搞定。

2025-04-24 22:01:20 1134

转载 RAG 作者:RAG 已死,RAG 万岁!

这就是为什么检索技术的创新一直快速发展,混合搜索、查询转换、自我反思、主动检索以及对结构化数据的支持等方面的进步,都在帮助您在知识库中找到正确的信息。这个网站将作为一个活生生的证明,展现检索在 AI 系统中持久的重要性,并且每当下一波“RAG 已死”的帖子不可避免地出现时,它都会更新。基于检索的方法可以通过仅添加最相关的信息来提供更快的响应。但这些论断——无论是针对上下文窗口的突破、微调技术的进步,还是模型上下文协议(MCP)的出现——都误解了 RAG 的目的,以及为何它在人工智能领域将永远占有一席之地。

2025-04-23 23:24:10 56

原创 上海交大位列第一,登榜不足百人,这期世界科学智能大赛解读来了!

—这时候,AI生成化学分子结构就能派上用场!1. 观察学习:通过分析赛事方给的分子数据集(比如一堆C、H、O等原子组成的3D结构),理解分子中原子如何“拼装”才合理(比如碳原子通常连4个键,氢原子不会乱飘)。可用扩散模型(如Diffusion)、GAN、VAE等生成式AI(类似Stable Diffusion画图,但生成的是分子),或结合强化学习优化生成结果。2. 自由创作:用学到的规则,AI自动“画”出1万个全新的3D分子结构(只需列出原子类型+坐标,比如“碳原子在(0.1, 0.2, 0.3)”)。

2025-04-22 23:59:28 208

原创 新增饿了么AI算法大赛(CV方向)!

2025年第二期,今晚新增饿了么AI算法大赛赛题二:CV方向。Datawhale AI春训营 x 饿了么AI算法大赛。旨在汇聚产学研资源和开源社区力量,为学习者提供。学习新增:Datawhale AI春训营。面向未来培养就业能力的春季AI集训活动,AI项目实践与就业绿通机会。Datawhale发布。

2025-04-21 22:59:36 160

转载 深圳大学成立人工智能学院!

仪式上,深圳大学校长、中国科学院院士毛军发说:“我们将重点推进高端人才领域培训算法突破、关键技术攻关、国际化平台建设和产学研深度融合,着力打造具有深大特色的人工智能人才培养基地和科技攻关高地。未来,随着更多高校的加入,人工智能学院或将成为科技创新和产业升级的重要引擎,为粤港澳大湾区人工智能产业发展提供强有力的科技支撑和智力支持。据悉,深圳大学人工智能学院,是响应国家人工智能发展战略,契合大湾区产业蓬勃发展需求,在国家战略引领下积极布局的前沿学院,学院构建“需求牵引、突破关键、百花齐放”的科研体系,

2025-04-21 17:29:57 180

转载 每年一次见面,庞大的组织队伍,2050大团聚来了!

Datawhale每年在4月底,都会在杭州2050大会组织大的团聚。每一年总会有老的朋友相聚,或许是曾经线下见过面,或许线上聊过天,团聚让我们有了线下见面的机会;每一年也会认识非常多有意思的新朋友,或者因为Datawhale这一共同的交集,或者是共同的兴趣,或者是因为座位相邻。,除了Datawhale,还会有更多大家可能认识的朋友。)或点击“阅读原文”报名大会,并带上你的PASS码截。如果你想参与到线下见面团聚,登陆2050官网(2050学习节千人大团聚报名。和浙江卢省长和王坚院士交流。

2025-04-21 00:01:39 62

原创 让孩子也能学AI,首个面向中小学的开源AI通识课发布!

由浅入深、层层递进的教学方式,中小学生也可以理解“神经网络”,“大模型的算力与数据”等复杂概念,这不仅让我们反思,Datawhale始终坚持与知识、与人与产业链接,是否让青少年也从中受益,不断的发展迭代。中小学AI通识课的开始,来自于一场与2024年秋天铺路石合作的公益活动。那时候,我们只是单纯的想给在上海的随迁儿童也带来人工智能的知识,从上海的久牵、铺路石合作出发,到温州的文兰书院,云南的捷豹路虎小学,随着公益课科普年龄的不断拓宽,技术呈现出它最动人的模样,让千里之外的眼睛,也能看见未来的星光。

2025-04-18 23:54:01 270

转载 Datawhale第六本书出版!

近年来,以 DeepSeek 为代表的新一代人工智能模型突破性地采用强化学习范式,成功克服了传统大语言模型过度依赖监督学习的局限性,展现出更强大的智能涌现能力,这进一步彰显了强化学习在人工智能发展进程中的战略价值。如果你想真正掌握强化学习,那么《Joy RL:强化学习实践教程》 是一本不可多得的实践指南,它既避免了纯理论的枯燥,又提供了丰富的代码示例,可以帮助读者从“知道”到“做到”,在强化学习的道路上走得更快、更稳!从第2章开始介绍强化学习中的基本问题模型,涉及的理论公式推导都有清晰的步骤。

2025-04-17 23:49:01 727

转载 OpenAI姚顺雨:欢迎来到AI下半场!

的行动——它并不直接影响外部世界,然而推理的空间是开放的、组合上是无限的——你可以思考一个单词、一个句子、一段完整的文章,或者 10000 个随机的英文单词,但你周围的世界并不会立即改变。经过几次重大转折和一系列里程碑式的成就,我们找到了一个可行的方案,利用语言和推理来解决广泛的强化学习任务。在其他地方,方法与基准测试的对比甚至更加悬殊——例如,Transformer 的主要基准测试是 WMT’14,其研讨会报告的引用次数约为 1300 次,而 Transformer 的引用次数超过了 16 万次。

2025-04-17 20:23:39 81

转载 AI原生时代的学习:如何学?学什么?为何学?

在智能时代,我们常常会产生这样的疑问:AI是大数据的产物,不论我看多少本书也不及它的凤毛麟角,那学习的意义何在,又该如何学习呢?学习逐渐呈现出学习空间开放多元、学习过程复杂非线性的特点,学习的社会化、智能化、情境化、网络化特征愈发显著,学习发生的情境是一个复杂系统,学习是一个复杂现象,学习的复杂性在智能时代被赋予了全新内涵,人类的认知方式、学习方式等都将发生系统性变革,以往对学习线性化的简单认识,难以深度揭示学习的规律,因此需要从复杂系统的视角出发来审视和研究学习,重构学习的理论体系。

2025-04-16 19:16:04 198

原创 浙大第一,49所海外高校,企业华为最多!

除了高校,这次学习覆盖了 1240个企业,包含互联网、通信、金融、制造业、能源、生物科技、交通、建筑、环保等10多个行业,华为、腾讯、百度、阿里、美团、字节跳动、京东、科大讯飞、大疆、海康威视、商汤、中兴通讯。格力电器、美的、比亚迪、宁德时代、三一重工、中联重科、吉利汽车、奇瑞汽车、中国一汽。中国银行、建设银行、招商银行、中信银行、平安集团、招联金融、微众银行。),其中浙大参与学习人数排第一,是这次学习最积极的高校。联影医疗、金赛药业、阿斯利康、默沙东、仁童科技、中山一院。参与学习人数排名前三的企业。

2025-04-15 23:59:51 155

原创 百万奖金赛事,AI4S赛道教程内容更新

报名地址:http://www.datawhale.cn/activity/190?http://competition.sais.com.cn/(电脑打开)Datawhale AI春训营 x 世界科学智能大赛。的全球规模最大的AI4S赛事:第三届世界科学智能。旨在汇聚产学研资源和开源社区力量,为学习者提供。内容更新:Datawhale AI春训营。面向未来培养就业能力的春季AI集训活动,筛选了最新的百万奖金赛事项目。AI+创新药方向内容已更新。目前RNA结构预测,

2025-04-14 22:47:01 226

原创 百万奖金赛事(AI+新能源)内容更新!

报名地址:http://www.datawhale.cn/activity/190?Datawhale AI春训营 x 世界科学智能大赛。的全球规模最大的AI4S赛事:第三届世界科学智能。旨在汇聚产学研资源和开源社区力量,为学习者提供。发电功率预测(AI+新能源)方向教程已更新。内容更新:Datawhale AI春训营。面向未来培养就业能力的春季AI集训活动,上海科学智能研究院和复旦大学联合主办。筛选了最新的百万奖金赛事项目。Datawhale发布。

2025-04-13 22:27:28 249

原创 新增大模型应用开发(RAG)内容

报名地址:http://www.datawhale.cn/activity/190?2025年第一期,新增阿里云百炼:大模型应用开发(RAG)内容。旨在汇聚产学研资源和开源社区力量,为学习者提供。Datawhale AI春训营 x 阿里云百炼。内容更新:Datawhale AI春训营。面向未来培养就业能力的春季AI集训活动,Datawhale发布。

2025-04-12 22:57:16 368

转载 新产品发布 | 语鲸:10倍提效,无惧信息焦虑!

比如,在我的“专题聚览”下,有一个“DeepSeek V3模型更新”的专题,它汇集了我订阅的所有频道中共计60多篇关于DeepSeek V3模型更新的文章,另外还展示了语鲸覆盖的所有信源的300多篇同主题文章。,不同于其他按热度筛选的千人一面的日报,语鲸的日报只会从你订阅的所有内容中选取专题或文章,我们希望你在特别忙的时候,每天花5分钟就能获取你真正关心的信息。

2025-04-12 18:19:33 133

原创 国内AI4S团队所在机构名单汇总

3. 共建国内头部的AI4S社区(科学家、开发者、创作者)现发起AI4S生态圈共建计划,诚邀相关高校、企业团队加入。1. 打造全球第一的AI4S大赛(曝光,规模,全球化)2. 共建国内领先的AI4S的生态(高校生态、国内头部AI4S团队所在机构名单。名单:国内AI4S团队所在机构。Datawhale发布。一起建设国内的AI4S生态。为进一步扩大生态影响,

2025-04-11 23:59:26 190

转载 Datawhale高校团队招募成员!

Datawhale(datawhale.cn)是国内头部的 AI 开源学习组织,Github 全球排名 Top 100,汇集了众多领域院校和知名企业的优秀学习者,聚合了一群有开源精神和探索精神的团队成员。“我通过dw学习并受益,我希望帮助身边的同学了解dw,少走弯路”“和dw一起成长,我的某方面能力可以变得越来越专业和更强”“我希望ai开源学习社区越做越好,我希望做一份贡献”Datawhale高校团队由宣传团队和高校组织。“喜欢认识人,接触外面的环境,了解更多的信息”第一期高校团队成员将正式招募。

2025-04-10 23:08:07 104

原创 提供实习绿通和奖学金!面向本科生、研究生的 AI 春训营来了!

2025年第一期,由Datawhale联合上海科学智能研究院、上海交大工研院。上海交大工研院、复星医药、道通集团、桔子数科、奇富科技、云司科技、提供就业绿通名额和实习机会的有:上海智能科学研究院、旨在汇聚产学研资源和开源社区力量,为学习者提供。、阿里云百炼等国内头部产学研机构共同主办。面向未来培养就业能力的春季AI集训活动,聚焦6大新兴行业和AI+X相关专业实践。只要你对AI方向感兴趣,有热情。面向人工智能 + 新兴行业。面向在校学生、在职学习者。提供实践与就业绿通机会。

2025-04-09 22:41:06 224

原创 40个城市,101所学校,从国内到海外,为师生搭建舞台,让99%的高校被看见

社团负责人跟我们说:“这里没有沿海城市的资源,但同学们对 Al 的渴望同样炽热。2024,从第 1 场到 101 场高校行:我们从沿海到西北、从北京到香港、从中国到海外。未来,AI+X 高校行将会坚持我们的初心和价值观,携手更多高校组织方,以 Datawhale 特色的保姆级教程和系列直播分享,结合每月的学习活动,让大家。:让西北的坚持、东北的匠心、西南的热忱,都被时代看见。因为被看见的每一束微光,都可能照亮千万人的道路。这背后是 AI 技术浪潮下的真实需求:当“AI+”成为未来趋势,

2025-04-08 00:26:16 460

转载 聊聊强化学习发展这十年

说个开玩笑的话,如果DS的文章放到几年前RL的审稿人手里,他大概率会得到这样的回复:这只是采用了策略梯度的方式将不可导的损失/奖励函数用于优化神经网络参数而已,请不要说自己使用了强化学习。这导致像作者这样的old school,在看到最新的强化学习应用文章时,总会试图问文章作者几个基础的问题,状态是啥,动作是啥,奖励是啥。同时这个阶段,有大量的强化学习研究者开始涌入这个方向,大家总体分为两拨,学术界的学者试图研究通用的强化学习算法,而工业界的人则在给强化学习找应用场景。

2025-04-06 23:45:49 91

转载 Meta深夜开源Llama 4!首次采用MoE,一张H100就能跑,竞技场超越DeepSeek

此外还发现,在训练过程中动态过滤掉优势为零的提示语,并构建包含多种能力的混合提示语的训练批次,有助于提高数学、推理和编码的性能。,128位专家的170亿激活参数多模态模型,击败GPT-4o和Gemini 2.0 Flash,与DeepSeek-V3同等代码能力参数只要一半,主打与DeepSeek一样的性价比,后训练阶段,为了最大限度地提高性能,他们删减了95%的SFT数据,而小型模型只需删减50%的数据,以实现对质量和效率的必要关注。目前第一组LIama 4系列模型,他们也公布了具体的训练细节。

2025-04-06 15:44:13 121

转载 最初只有12个人!英伟达早期架构师首次亲述CUDA发展全过程

最近,在 NVIDIA 的一次内部对话中,英伟达的三位员工 Nader、Stephen 和 Carter 三位员工分享了他们对 CUDA 技术的发展历程及其在计算科学和 AI 领域的应用的见解。事实证明我们是对的。但现在的情况又不一样了,我们在图形方面看到的不少重大进步,其实是来自基于 AI 的着色器、神经网络着色器等,比如机器学习 RTX。我们在英伟达的一大工作重点,就是让 Python 成为 CUDA 平台中的重要部分,确保平台中的各个部分,包括库、SDK 和编译器都能跟 Python 顺畅交互。

2025-04-05 22:53:21 126

转载 微软诞生50周年,比尔盖茨亲自公开微软起家的源代码:Altair Basic!

我们认为,如果我们能将我们的 BASIC 代码压缩到仅 4 kB,那么使用 BASIC 的 Altair 用户仍然会有足够的内存来运行他们编写的程序(而不必再花更多钱)。近日,比尔・盖茨亲自撰文回忆了微软的诞生和他们的第一笔业务,同时还通过一份 157 页的 PDF 文件分享了他们为这项业务编写的 Altair BASIC 源代码。你可以在我的回忆录《源代码(Source Code)》中阅读更多 Altair BASIC 的起源故事,包括保罗在飞往阿尔伯克基的航班上完成部分代码的经历。

2025-04-05 17:31:25 130

转载 DeepSeek联合清华公布推理时Scaling新论文!R2要来了?

通过更大规模的采样,DeepSeek-GRM 可以更准确地判断具有更高多样性的原则,并以更细的粒度输出奖励,从而解决挑战。本周五提交的一项工作中,来自 DeepSeek、清华大学的研究人员探索了奖励模型(RM)的不同方法,发现逐点生成奖励模型(GRM)可以统一纯语言表示中单个、成对和多个响应的评分,从而克服了挑战。受到初步实验结果的启发,研究者提出了一种用于逐点通用奖励模型的新方法,能够学习生成具有适应性和高质量的原则,以有效引导批评内容的生成,该方法被称为自我原则批评调整(SPCT)。

2025-04-04 21:52:55 444

转载 LLM 工程师工具箱:120+大模型库全攻略!

这个由 KalyanKS-NLP 创建的仓库,精心整理了超过 120 个 LLM 相关的库,并按照类别进行了分类。无论是训练、推理、应用开发,还是数据提取、安全评估,你都能在这里找到对应的工具。:Retrieval-Augmented Generation(检索增强生成)相关的库,提升模型的知识检索能力。在大语言模型(LLM)迅速发展的今天,开发者们面临着海量的资源和工具选择。:专注于 LLM 训练和微调的工具,帮助你更快、更高效地优化模型。:推理加速和优化工具,让模型运行更流畅。Datawhale推荐。

2025-04-03 21:34:35 107

转载 用 MCP 让大模型自动批量解读文献,保姆级教程来了!

MCP 就负责把 AI 模型需要的所有信息(比如要查的资料、要用的工具、之前的聊天记录等等)都准备好,打包成一个大礼包(上下文),交给 AI 模型。这样,AI 模型就不用学那么多外语了,只需要跟 MCP 说就行。MCP 作为「模型上下文协议」,可以看成专门为 AI 模型设计生态系统服务,它通过一个标准化的协议来管理和交换 AI 模型所需的各种信息,从而实现与各种外部服务和数据源的无缝集成。要加新的功能,比如查天气、订机票、下载文献等,只需要让 MCP 学会跟新的外部世界打交道就行,不用改 AI 模型本身。

2025-04-02 22:32:57 457

转载 稚晖君刚挖来的90后机器人大牛:逆袭履历堪比爽文男主

在采访中,罗剑岚坦承自己因为在科研项目中关注到UC伯克利分校卡泽洛尼教授领衔的实验,其后有缘又在天津举办的机器人研究国际会议上,获得了直接向卡泽洛尼教授发问的机会,并进一步在会后递上了自己的简历,向教授明确表达:“我想读您的研究生!而且也是在这次会议上,罗剑岚的半年苦功也换来了回报,他获得提问机会,把几个月来的思考化成几个刁钻的问题抛给了教授,卡泽洛尼会后再次找到他给出认可:“小伙子,不出意外,我想,我要把你带到伯克利。他查到卡泽洛尼教授将赴韩国参加一场有关机器人的国际会议,随即办好签证就追了过去。

2025-04-02 21:59:56 84

转载 一个LangChain与MCP结合使用的案例!

Anthropic 的 Model Context Protocol(MCP)是一个开源协议,用于将 LLM 连接到上下文、工具和提示词。LLM 应用的一个核心关注点是数据传输,即如何将数据提供给 LLM 进行推理。开发者可以使用 MCP 构建可复用、模块化的连接器,并利用针对主流平台的预构建服务器,从而打造一个由社区驱动的生态系统。如果你和我一样,那么无论原型多么简单,能够让它运行起来都会带来极大的清晰感和理解力——至少在我的思维方式里是这样的。在终端窗口中,创建两个选项卡。

2025-04-02 12:10:07 269

原创 dify v0.15.3外挂ragflow知识库,保姆级教程来了!

我们可以看到这里有非常多的模型配置选择,在ragflow中有embedding模型和rerank模型,不过它们都没有发布为api,无法调用。在探索页面有非常多的应用开发模板提供,按照自己的应用场景选择合适的即可,比如我想要一个社会学领域知识深度搜索的应用,就选择DeepResearch模板。为什么要和dify结合呢,是因为dify的智能体功能非常强大,ragflow中虽然有类似的功能,但是并没有dify那么强大;但是ragflow可以。对应的,ragflow的资源消耗比较大,大家可以注意一下!

2025-04-01 22:48:20 1037

转载 奥特曼官宣开源!第一弹就推理模型,还不限制商用,“冲着DeepSeek来的”

在发布之前,OpenAI 将根据自己的安全准备框架(Preparedness Framework)评估这个模型,就像对任何其他模型所做的那样。同时,这个模型也允许大公司商用,奥特曼阴阳怪气 Llama 开源的用户规模限制规定:产品或服务月活超 7 亿,就要向 Meta 申请特殊许可。开放权重意味着语言模型的训练参数或权重是公开访问的,开发者可以使用它来分析和微调模型以执行特定任务,而无需原始训练数据。三箭齐发,发展为“巨无霸”的 OpenAI 再次 Open,ChatGPT 也重回最初的巅峰。

2025-04-01 12:20:04 82

转载 字节 DAPO 技术报告有感!大模型 RL 细节为王

在dapo中,一个核心是dynamic-sampling,简单来说,根据当前模型在prompt的bon,动态决定采样budget,难prompt采样更多的sample,简单prompt则采样更少的prompt,以及过滤模型解决不了的hard-prompt或者easy-prompt。前期loss过大,优化过于激进。这里,第一行是 大batch的loss计算,第二行是ga=2的loss计算,显然,主流框架实现的为第二行的loss计算,天然会比大batch计算的loss更大,对于长文本训练会产生不利的影响。

2025-03-31 20:52:31 62

转载 北大人工智能研究院朱松纯:“中国的AI叙事” 存在认知偏差

是通过模拟与建模,让文明、社会、经济与政策等可以进入可验证的科学范畴,而非止步于图像、语音和对话的优化。的话题被广泛炒作,形成全球范围的焦虑。我特别重视与行业、媒体的交流和沟通,原因在于我深知行业的“叙事逻辑”,对于社会认知的重要性。当下,政府机构、公众、甚至媒体,对人工智能的理解严重不足,跟着西方叙事亦步亦趋,最后只能得出。未来最难解决的问题,恰恰在于文科所关心的社会复杂系统,比如人口、政策、文明演化、价值体系。第五层,工程与部署:把模型落地到硬件、平台,优化存储、计算,形成可用的产品和系统。

2025-03-31 14:33:43 198

原创 RAG篇「数据集构建」保姆级教程来了!

直接以“问题-答案”形式存储知识,检索时相似度计算更聚焦于“问题与问题”的匹配(Question-Question Similarity),而非“问题与段落”的匹配。这是本系列的第二篇,中间还有很多需要完善的地方,我们非常期待各位小伙伴的宝贵建议和指正,让我们共同进步,一起在AI学习的道路上探索更多乐趣!:若检索到的是长文本段落,生成模型(如GPT)需要从段落中提取关键信息并重组答案,可能导致信息冗余或遗漏。答案部分已是对问题的直接回应,生成模型只需“改写”或“补充”答案,而非从头生成,降低幻觉风险。

2025-03-30 22:08:26 1332

转载 GPT-4o图像生成的秘密,OpenAI 没说,网友已经拼出真相?

不过,值得一提的是,香港中文大学博士生刘杰(Jie Liu)在研究 GPT-4o 的前端时发现,用户在生成图像时看到的逐行生成图像的效果其实只是浏览器上的前端动画效果,并不能准确真实地反映其图像生成的具体过程。图像生成还具备背景移除功能,从目前的情况来说,最初 GPT-4o 生成图片会呈现一个假的棋盘格背景,直到最后才移除实际背景,这会略微降低图像质量。也因此,它们具有更好的泛化能力,能够使用多条消息进行上下文学习,通过特定的编辑输出相同(或非常接近)的结果,并且具有广义的空间和场景感。

2025-03-29 23:35:32 103

转载 GPT-4o「吉卜力风」一夜爆火,奥特曼连夜换头像!宫崎骏痛批AI侮辱生命

有人透露,他正在Midjourney的账号上表示:GPT-4o的图像生成速度慢、效果差,OpenAI只是为了筹集资金,而且是在以有害的方式参与竞争。2016年,在观看了一场关于AI创作动画的内部演示后,他严肃地表示,「如果你们想做这种令人作呕的东西,这是你们的自由,但我绝不会和它扯上任何关系」。很快,好莱坞在预算时将不再考虑手工劳动的小时数,而是考虑运行和推理的计算小时数。可以确定的是,吉卜力工作室,这个因《千与千寻》和《龙猫》等经典动画电影而享誉全球的名字,早已在全球范围内拥有一批忠实的粉丝。

2025-03-28 22:02:50 297

转载 AI Agent 的未来是事件驱动的

此外,由于 LLM(大语言模型)主要基于公开数据训练,它们无法直接访问专有的行业数据,因此在回答需要具体上下文的信息时往往显得力不从心。AI 的未来不仅仅是构建更智能的 Agent——更重要的是创建能够随着技术进步而进化和扩展的系统。与第一波 AI 受限于单一领域不同,生成式模型是在海量、多样化的数据集上进行训练的,因此具备了跨不同场景泛化的能力。它们可以生成文本、图像,甚至视频,为 AI 的应用开辟了全新的可能性。代理的输出可以无缝集成到 CRM、CDP、分析工具等中,创建一个统一的、可适应的生态系统。

2025-03-28 14:10:39 72

原创 微调篇「数据集构建」保姆级教程来了!

第三步:开展人工终审,通过随机抽查的方式,对经过前两级处理的数据进行最终审核,确保数据的完整性和可靠性。这是本系列的第一篇,中间还有很多需要完善的地方,我们非常期待各位小伙伴的宝贵建议和指正,让我们共同进步,一起在AI学习的道路上探索更多乐趣!此处数据集构建的时候也需要考虑到所构建的模型是哪家的~比如,通义千问系列的模型更适合找通义千文帮忙构建数据集,会更有利于模型微调训练哦~:在一些特定的任务中,如图像生成或语音识别,添加噪声数据可以帮助模型学习到更复杂的模式和特征,从而提升模型在实际应用中的表现。

2025-03-27 23:43:51 1910

转载 AI Agents全栈技术框架综述与未来!

主管管理Agent之间的通信,并可以为专业化的代理分配特定的任务。这个过程在 ReAct 中缺失,而 Reflexion 正是填补这一空白的地方, 利用verbal reinforcement 帮助代理从之前的失败中学习的技术。工具使用是一种强大的技术,可以增强 LLM 的能力并弥补它们的不足。在训练 LLM 时,可以给它足够数量包含类似思维的例子的数据集,或者 LLM 可以发现自己的思考过程。实现短期记忆最直接的方法是使用模型的上下文窗口,这本质上是 LLM 可以处理的 token 数量。

2025-03-26 23:31:57 104

用Python解决数据结构与算法问题

一本关于python版本极佳的数据结构和算法相关教材 而掌握算法和数据结构是拿到好offer必备的核心技能!

2018-08-22

机器学习_数学基础_精选教材(概率,线代,微积分)

普林斯顿微积分读本高清中文版 概率论与数理统计 - 陈希孺 MIT线性代数导论_Introduction to Linear Algebra, 4th 每一本都是经典之作,和国内同济版相比,通俗易懂,易于自学。 奠定机器学习数学基础,三本教材就够了!!!

2018-08-09

Airbnb 新用户的民宿预定预测-数据集

Airbnb 新用户的民宿预定预测 kaggle比赛完整数据集 主要包含5个csv文件

2018-06-20

Python数据分析与挖掘实战(高清带标签+源代码)

10余位数据挖掘领域资深专家和科研人员,10余年大数据挖掘咨询与实施经验结晶。从数据挖掘的应用出发,以电力、航空、医疗、互联网、生产制造以及公共服务等行业真实案例为主线,深入浅出介绍Python数据挖掘建模过程,实践性极强。 本书共15章,分两个部分:基础篇、实战篇。基础篇介绍了数据挖掘的基本原理,实战篇介绍了一个个真实案例,通过对案例深入浅出的剖析,使读者在不知不觉中通过案例实践获得数据挖掘项目经验,同时快速领悟看似难懂的数据挖掘理论。读者在阅读过程中,应充分利用随书配套的案例建模数据,借助相关的数据挖掘建模工具,通过上机实验,以快速理解相关知识与理论。 基础篇(第1~5章),第1章的主要内容是数据挖掘概述;第2章对本书所用到的数据挖掘建模工具Python语言进行了简明扼要的说明;第3章、第4章、第5章对数据挖掘的建模过程,包括数据探索、数据预处理及挖掘建模的常用算法与原理进行了介绍。 实战篇(第6~15章),重点对数据挖掘技术在电力、航空、医疗、互联网、生产制造以及公共服务等行业的应用进行了分析。在案例结构组织上,本书是按照先介绍案例背景与挖掘目标,再阐述分析方法与过程,最后完成模型构建的顺序进行的,在建模过程的关键环节,穿插程序实现代码。最后通过上机实践,加深读者对数据挖掘技术在案例应用中的理解。

2018-06-20

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除