会场安排
(一):给出活动的安排时间,要把每个活动都安排好,求所需最少的会场数目;就是最大相容块问题
假设要在足够多的会场里安排一批数目为N活动,E={e1, e2, …, en},其中每个活动都需要使用某一会场,而在同一时间内该会场只能由一个活动使用,每个活动都有开始时间si和结束时间fi(si<fi),并希望使用尽可能少的会场。设计一个有效的贪心算法进行安排。
贪心算法:
所谓贪心算法是指,在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。
贪心算法不是对所有问题都能得到整体最优解,但对范围相当广泛的许多问题他能产生整体最优解或者是整体最优解的近似解。
贪心算法的基本思路:
1.建立数学模型来描述问题。
2.把求解的问题分成若干个子问题。
3.对每一子问题求解,得到子问题的局部最优解。
4.把子问题的解局部最优解合成原来解问题的一个解。
引言:
会场问题来源于实际,事实上无论任何与时间分配的问题都要考虑一个安排问题,来达到所占用资源最少与所花费时间最短,具体我们可以在社会各个角落得以应用,例如的公司会议,要求开会的时间不能冲突,而公司的会议室又有所限,何以安排最佳的顺序来开会,学校课程安排,来占用最少的教室,体育场场地分配问题,安排各个项目既不能冲突所占用的场地又最少,还有等等例如酒店婚宴安排,车站休息室安排,新闻直播时间安排,这里就不一一枚举,那么到此我们可以自然的理解会场安排问题的来源与重要性,也进一步深化了问题具体化了问题。
课本类似问题回顾与对照:
会场安排问题课本上的机器调度问题相似,也可看出该问题的广泛性: