8位的格雷码的分治实现法

#include <iostream>
using namespace std;

unsigned int a[1024];

void gray(int n)
{
    if(n==1)
    {
        a[1] = 0;
        a[2] = 1;
    }
    else
    {
        gray(n-1);
        unsigned int k=1<<(n-1), i=k;
        for(; i>0; i--)
            a[2*k-i+1] = a[i] + k;
    }
}

void out(int n)
{
    char str[15];
    int m = 1<<n;
    for(int i=1; i<=m; i++)
    {
        itoa(a[i], str, 2);
        int strlength = strlen(str);
        for(int j=0; j<n-strlength; j++)
            cout << '0';
        cout << str << endl;
    }
}

int _tmain(int argc, _TCHAR* argv[])
{
    int n = 8;
    gray(n);
    out(n);
    system("pause");
    return 0;
}
阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/Datura_Metel/article/details/79951615
个人分类: 算法
上一篇未排列的n个数组元素的最大间距
下一篇基于异步选择模型的服务器实践
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭