poj:2926:最大曼哈顿距离

题目大意:
给你N个数的五维坐标,要你求任意两点之间的最大曼哈顿距离;

思路:
对于点i和j:曼哈顿距离为:|x1-x2|+|y1-y2|+…
去掉绝对值(+-x1+-y1…)-(+-x2+-y2…)且对应的位置加减符号相同
那么对于五维坐标就有2^5种可能
然后枚举求出最大值

#include <cstdio>
#include <algorithm>
#define inf 0x3f3f3f3f
using namespace std;
double s[100009][6];
int main()
{
    int n;
    scanf("%d",&n);
    for(int i=0; i<n; i++)
        for(int j=0; j<5; j++) scanf("%lf",&s[i][j]);
    double ans=0;
    for(int i=0; i<(1<<5); i++)//枚举每一种可能
    {
        double minn=inf,maxn=-inf;
        for(int j=0; j<n; j++)//计算每个数的值
        {
            double t=0;
            for(int k=0; k<5; k++)
            {
                if((1<<k)&i) t+=s[j][k];//采用位运算枚举
                else t-=s[j][k];
            }
            minn=min(minn,t);
            maxn=max(maxn,t);
        }
        ans=max(ans,(maxn-minn));//此即前i情况下对应的最大值
    }
    printf("%.2f\n",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值