题目大意:
给你N个数的五维坐标,要你求任意两点之间的最大曼哈顿距离;
思路:
对于点i和j:曼哈顿距离为:|x1-x2|+|y1-y2|+…
去掉绝对值(+-x1+-y1…)-(+-x2+-y2…)且对应的位置加减符号相同
那么对于五维坐标就有2^5种可能
然后枚举求出最大值
#include <cstdio>
#include <algorithm>
#define inf 0x3f3f3f3f
using namespace std;
double s[100009][6];
int main()
{
int n;
scanf("%d",&n);
for(int i=0; i<n; i++)
for(int j=0; j<5; j++) scanf("%lf",&s[i][j]);
double ans=0;
for(int i=0; i<(1<<5); i++)//枚举每一种可能
{
double minn=inf,maxn=-inf;
for(int j=0; j<n; j++)//计算每个数的值
{
double t=0;
for(int k=0; k<5; k++)
{
if((1<<k)&i) t+=s[j][k];//采用位运算枚举
else t-=s[j][k];
}
minn=min(minn,t);
maxn=max(maxn,t);
}
ans=max(ans,(maxn-minn));//此即前i情况下对应的最大值
}
printf("%.2f\n",ans);
return 0;
}