poj2992:N!素因子个数,因子个数

题目大意:
求组合数Cnk的因子个数;
思路:
要求因子个数,由于因子可由素因子组合而成,所以先求得素因子个数
N!某素因子p的指数公式:
P(N!)=[N/p^1]+[N/p^2]+[N/p^3]+…+[N/p^n];
其中最后一个式子中n是使得p^n小于等于N的最大数;
因子个数公式:
cnt=(p1+1)(p2+1)(p3+1)….*(pn+1);

此题要先打表,否则会超时;

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
const int maxn=440;
int prime[maxn+1];
long long p[maxn+1][maxn+1];
void getprime()
{
    memset(prime,0,sizeof prime);
    for(int i=2; i<=maxn; i++)
    {
        if(!prime[i]) prime[++prime[0]]=i;
        for(int j=1; j<=prime[0]&&i*prime[j]<=maxn; j++)
        {
            prime[i*prime[j]]=1;
            if(i%prime[j]==0) break;
        }
    }
}
long long cal(int n,int x)
{
   long long ans=0;
   while(n)
   {
       ans+=n/x;
       n/=x;
  }
  return ans;
}
int main()
{
    getprime();
    memset(p,0,sizeof p);
     for(int i=1;i<maxn;i++)
        for(int j=1;j<=prime[0];j++)
        p[i][prime[j]]=cal(i,prime[j]);
    int n,k;
    while(~scanf("%d%d",&n,&k))
    {
        long long ans=1;
        for(int i=prime[1],x=1;i<=n;i=prime[++x])
            ans*=(p[n][i]-p[n-k][i]-p[k][i]+1);
        cout<<ans<<endl;
    }
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 给定两个长度均为 $n$ 的数组 $A,B$,其中 $A$ 数组中的元两两不同,$B$ 数组中元也两两不同。 定义 $A$ 数组的第 $i$ 个元为 $a_i$,$B$ 数组的第 $i$ 个元为 $b_i$。定义一个四元组 $(i,j,k,l)$ 符合条件当且仅当 $1 \leq i < j \leq n$,$1 \leq k < l \leq n$,$$ a_i+b_j=k+l $$ 问有多少个符合条件的四元组。 输入 输入的第一行为一个整数 $n$,表示 $A$ 和 $B$ 数组的长度。 接下来 $n$ 行,第 $i$ 行包含两个整数 $A_i$ 和 $B_i$。 输出 输出一行,一个整数,表示符合条件的四元组个数。 输入样例 3 1 1 2 2 3 3 输出样例 6 提示 $1 \leq n \leq 1500$,$1 \leq A_i,B_i \leq 10^9$ 这一题要求解符合条件的四元组。其中有一个直观的想法就是将四元组分类讨论,如下所示: $$a_i + b_j = k + l$$ 分类讨论,当 $i < k, j < l$ 时就是一种方案,当 $i > k, j > l$ 时是另一种情况。 因此,对于每一种 $a_i + b_j$ 的和,记录下它的出现次数,同时记录下这个和所对应的 $i, j$ 的值。在计算的过程中,如果遇到相同的和的时候,再次遇到时是可以直接忽略的,因为等式是对称的。 统计符合条件的四元组当然要对和进行枚举,但是值得注意的是,在构造符合条件的 $k, l$ 的时候,数组 $C$ 和 $D$ 的记录顺序是无关紧要的,因为等式 $a_i + b_j = k + l$ 已经将每个数字都制约了,它们可以出现任意的顺序。因此,在统计 $C$ 和 $D$ 对于计算答案来说是无区别的。 这一题值得特别注意的是,当数组中有数据的时候,要注意考虑到数据越界可能导致结果错误。在本题中,由于 $a_i, b_j$ 的上限是 $10^9$,因此 $a_i + b_j$ 的上限最大可能会达到 $2 \times 10^9$,因此在计算时一定要使用 long long 类型,否则很容易产生错误。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值