输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建二叉树并返回。
前序遍历的顺序是“根->左->右”,中序遍历的顺序是“左->根->右”。因此,前序遍历的第一个数就是二叉树的根节点,在中序遍历中,找到根节点,根节点的左边是二叉树的左子树,根节点的右边是二叉树的右子树。上面的问题中,根节点是1,在中序遍历中找到1,那么{4,7,2}是二叉树的左子树,{5,3,8,6}是根节点的右子树。
我们将{4,7,2},{5,3,8,6}看做一颗新的二叉树,再用上面的思路进行根节点的寻找,就可以重构整个二叉树。
综上分析,这个思路就是递归的思路。
具体代码如下;
/**
* Definition for binary tree
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
import java.util.Arrays;
public class Solution {
public TreeNode reConstructBinaryTree(int [] pre,int [] in) {
if(pre.length ==0 || in.length == 0){
return null;
}
// 根节点
TreeNode node = new TreeNode(pre[0]);
// 寻找中序遍历的根节点
for(int i = 0; i <= in.length - 1; i++){
if(pre[0] == in[i]){
// 在中序遍历找到根节点后,将根节点左边的和右边的序列分别看成新的子树,进行遍历,注意AArrays.copyOfRange(T[ ] original,int from,int to)
//将一个原始的数组original,从小标from开始复制,复制到小标to,生成一个新的数组。注意这里包括下标from,不包括下标to。
node.left = reConstructBinaryTree(Arrays.copyOfRange(pre,1,i + 1),Arrays.copyOfRange(in,0,i));
node.right = reConstructBinaryTree(Arrays.copyOfRange(pre,i + 1,pre.length),Arrays.copyOfRange(in, i + 1,in.length));
}
}
return node;
}
}