根据二叉树的前序遍历和中序遍历,重构二叉树

输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建二叉树并返回。

前序遍历的顺序是“根->左->右”,中序遍历的顺序是“左->根->右”。因此,前序遍历的第一个数就是二叉树的根节点,在中序遍历中,找到根节点,根节点的左边是二叉树的左子树,根节点的右边是二叉树的右子树。上面的问题中,根节点是1,在中序遍历中找到1,那么{4,7,2}是二叉树的左子树,{5,3,8,6}是根节点的右子树。

我们将{4,7,2},{5,3,8,6}看做一颗新的二叉树,再用上面的思路进行根节点的寻找,就可以重构整个二叉树。

综上分析,这个思路就是递归的思路。
具体代码如下;

/**
 * Definition for binary tree
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
import java.util.Arrays;
public class Solution {
   public TreeNode reConstructBinaryTree(int [] pre,int [] in) {
            if(pre.length ==0 || in.length == 0){
                return null;
            }
            // 根节点
            TreeNode node = new TreeNode(pre[0]);
            // 寻找中序遍历的根节点
            for(int i = 0; i <= in.length - 1; i++){
                if(pre[0] == in[i]){
                    // 在中序遍历找到根节点后,将根节点左边的和右边的序列分别看成新的子树,进行遍历,注意AArrays.copyOfRange(T[ ] original,int from,int to)
                    //将一个原始的数组original,从小标from开始复制,复制到小标to,生成一个新的数组。注意这里包括下标from,不包括下标to。
                    node.left = reConstructBinaryTree(Arrays.copyOfRange(pre,1,i + 1),Arrays.copyOfRange(in,0,i));
                    node.right = reConstructBinaryTree(Arrays.copyOfRange(pre,i + 1,pre.length),Arrays.copyOfRange(in, i + 1,in.length));
                }
            }
            return node;
        }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值