- 博客(5)
- 收藏
- 关注
原创 Cramer-Rao Lower Bound 推导
充分完备统计量在绝大多数情况下根本找不到,但即使在这种情况下,仍然可以求出统计量优化的极限,即克拉美罗下界。Cramer-Rao Lower Bound (CRLB) 很明显是一个MSE值,并且和以下因素有关:统计模型p(x,θ)p(\mathbf{x},\theta)p(x,θ);样本数量nnn。下面推导Cramer-Rao Lower Bound:假设样本数为nnn,样本向量为x\mathbf{x}x,待估计参数是一个标量θ∈R\theta \in \Rθ∈R。假设估计量为θ^(x)\ha
2022-04-17 23:13:26 1872
原创 顺序统计量分布计算
1. 问题假设有nnn个独立同分布的样本:X1,⋯ ,Xn∼fX(x)X_1,\cdots,X_n \sim f_X(x)X1,⋯,Xn∼fX(x),下面给出两个统计量:θ1^=max(X1,⋯ ,Xn)\hat{\theta_1} = \max(X_1, \cdots, X_n)θ1^=max(X1,⋯,Xn)θ2^=min(X1,⋯ ,Xn)\hat{\theta_2} = \min(X_1, \cdots, X_n)θ2^=min(X1,⋯,Xn)求解这俩新随机变
2022-04-16 19:55:00 1328
原创 具有对称性的信道的信道容量计算方法
1. 三类具有对称性的信道在不同的《信息论》教材中,有关信道对称性的描述并不统一,这为学习对称性信道的信道容量计算方法造成的一定障碍。因此,本文在文章的开篇部分将对本文中所描述的三种具有对称性的信道进行严格定义,以减小文章出现歧义的概率。Symmetric Channel:对称信道(Symmetric Channel)是最严格的对称性信道,该信道要求:对于任意输入符号,其转移概率均为第一个输入符号转移概率的置换;即:∀xt∈X,∃E=∏Eij,s.t. p⃗(y∣xt)=p⃗(y∣x1)
2021-04-10 11:44:38 13173 1
原创 一种基于线性方程组的信道容量求解方法
一种基于线性方程组的信道容量求解方法1. 信道容量的一般性结论信道容量的定义为:C=I(X;Y)max C = I(X;Y)_{\max}C=I(X;Y)max求解信道容量,即在以输入分布为自变量的情况下,求解平均互信息的极大值。需要注意的是:输入分布是信源概率空间中的概率,需要满足概率空间完备性。而直接通过驻点求解出的结论未必满足这一完备性。因此:信道容量的求解问题本质上是多元函数求解约束极值的问题。1.1. 拉格朗日乘子法多元函数的约束极值一般通过拉格朗日乘子法求解。拉格朗日乘子法的
2021-04-08 09:56:01 705 4
原创 《信息论与编码》学习笔记
信息论与信息编码文章目录信息论与信息编码1. 准备知识和教材1.1. 学科关联1.2. 准备知识1.3. 教材1.4. 理论体系的简要概述1.5. 编码技术的举例1.5.1. 压缩编码1.5.1.1. 霍夫曼编码1.5.1.2. 算术编码1.5.1.3. Lempel-Ziv编码1.5.2. 校验编码1.5.2.1. 汉明码1.5.2.2. BCH编码1.5.2.3. Turbo码1.5.2.4. Gallager码(LDPC,低密度奇偶校验码)1.6. 香农信息论的建立过程1.7. 香农信息论存在的问题
2021-04-07 21:18:47 4188 3
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人