###### SPOJ COWPIC

E - Cow Photographs
Time Limit:177MS     Memory Limit:1572864KB     64bit IO Format:%lld & %llu

Description

Farmer John wants to take a picture of his entire herd of N (1 <= N <= 100,000) cows conveniently numbered 1..N so he can show off to his friends.

On picture day, the cows run to form a single line in some arbitrary order with position i containing cow c_i (1 <= c_i <= N). Farmer John has his own ideas about how the cows should line up.

FJ thinks cow i may stand only to the left of cow i+1 (for all i, 1 <= i <= N-1) and that cow N may only stand to the left of Cow 1.  Of course, no cow will stand to the left of the first (leftmost) cow in the line.

The cows are hungry for the promised post-photo dinner, so Farmer John wants to take the picture as quickly as possible. Cows are not great at following directions, so he will only choose a pair of adjacent cows and have them switch places once per minute. How quickly is Farmer John able to get them into some acceptable order?

Consider a set of 5 cows whose initial lineup looks like this:

Left           Right
3  5  4  2  1

He can first swap the second pair of cows:

3  4  5  2 1

and then swap the rightmost pair:

3  4  5  1  2

to yield an acceptable lineup that required but two minutes of cow swapping.

### Input

Line 1: A single integer: N
Lines 2..N+1: Line i+1 contains the number of the i-th cow in line: c_i

### Output

Line 1: The minimum amount of time, in minutes, that it takes Farmer John to get the cows into some appropriate order.

### Example

Input:
5
3
5
4
2
1

Output:
2

#include <stdio.h>
#include <iostream>
using namespace std;
long long int g_nCount=0;
void mergearray(int a[], int first, int mid, int last, int temp[])
{
int i = first, j = mid + 1;
int m = mid,   n = last;
int k = 0;

while (i <= m && j <= n)
{
if (a[i] < a[j])
temp[k++] = a[i++];
else
{
temp[k++] = a[j++];
g_nCount += m - i + 1;
}
}

while (i <= m)
temp[k++] = a[i++];
while (j <= n)
temp[k++] = a[j++];

for (i = 0; i < k; i++)
a[first + i] = temp[i];
}
void mergesort(int a[], int first, int last, int temp[])
{
if (first < last)
{
int mid = (first + last) / 2;
mergesort(a, first, mid, temp);
mergesort(a, mid + 1, last, temp);
mergearray(a, first, mid, last, temp);
}
}

bool MergeSort(int a[], int n)
{
int *p = new int[n];
if (p == NULL)
return false;
mergesort(a, 0, n - 1, p);
return true;
}

int main()
{

int n;
long long int minn;
int store[100005],p[100005];
cin>>n;
for(int i=0;i<n;i++)
{
cin>>store[i];
}
for(int i=0;i<n;i++)
{
p[store[i]]=i;
}
MergeSort(store, n);
g_nCount=g_nCount-p[1]+(n-p[1]-1);
minn=g_nCount;
for(int i=2;i<n;i++)
{
g_nCount=g_nCount-p[i]+(n-p[i]-1);
if(g_nCount<minn)
minn=g_nCount;
}
printf("%lld\n",minn);
return 0;
}

#### SPOJ COWPIC（逆序对变形题）

2014-11-13 18:58:03

#### SPOJ简介

2016-07-26 11:02:13

#### SPOJ QTREE 系列

2015-08-04 00:14:26

#### spoj 第42题 reverse

2009年03月30日 413B 下载

#### SPOJ DIVCNT2

2016-11-16 16:19:20

#### [SPOJ 3267] D-query （主席树入门）

2016-08-06 14:45:06

#### SPOJ DIVCNT2（莫比乌斯反演+杜教筛）

2017-06-01 22:02:25

#### SPOJ DQUERY D-query 莫队算法

2016-09-03 11:27:15

#### SPOJ QTREE 1-3题解

2015-10-22 14:05:57

#### SPOJ SUBLEX Lexicographical Substring Search 后缀自动机

2015-04-10 15:49:00

SPOJ COWPIC