ExecutorCompletionService的使用和实现

CompletionService介绍:

将生产新的异步任务与使用已完成任务的结果分离开来的服务。生产者 submit 执行的任务。使用者take 已完成的任务,并按照完成这些任务的完成顺序处理它们的结果。例如,CompletionService 可以用来管理异步 IO ,执行读操作的任务作为程序或系统的一部分提交,然后,当完成读操作时,会在程序的不同部分执行其他操作,执行操作的顺序可能与所请求的顺序不同。

通常,CompletionService 依赖于一个单独的 Executor 来实际执行任务,在这种情况下,CompletionService只管理一个内部完成队列。ExecutorCompletionService 类提供了此方法的一个实现。


继承结构:

 

任务代码:

public class CallbleTask implements Callable<Integer> {
	/**
	 * 休眠时间
	 */
	private int sleepSeconds;
	/**
	 * 返回的值
	 */
	private int returnValue;

	public CallbleTask(int sleepSeconds, int returnValue) {
		this.sleepSeconds = sleepSeconds;
		this.returnValue = returnValue;
	}

	@Override
	public Integer call() throws Exception {
		System.out.println("begin to execute.");

		TimeUnit.SECONDS.sleep(sleepSeconds);

		System.out.println("end to execute.");

		return returnValue;
	}
}

Main方法:

public class Main {

	public static void main(String[] args) {
		int taskSize = 5;

		ExecutorService executor = Executors.newFixedThreadPool(taskSize);

		// 构建完成服务
		CompletionService<Integer> completionService = new ExecutorCompletionService<Integer>(executor);
		int sleep = 5; // 睡眠时间,单位是秒,不是毫秒
		for (int i = 1; i <= taskSize; i++) {
			int value = i; // 返回结果
			// 向线程池提交任务
			completionService.submit(new CallbleTask(sleep, value));//返回结果类型FutureTask
		}

		// 按照完成顺序,打印结果
		for (int i = 0; i < taskSize; i++) {
			try {
				System.out.println(completionService.take().get());// 阻塞,知道有任务完成可以获取结果
				// System.out.println(completionService.poll());//poll直接返回,不阻塞。但是没有完成的任务则返回null
				// System.out.println(completionService.poll(5, TimeUnit.SECONDS));//阻塞等待指定时间,如果有完成结果返回,没有的直接返回null																					// completionService.submit(new RunnableTask(),2);//completionService提交Runnable任务是无法获取结果的

			} catch (InterruptedException e) {
				e.printStackTrace();
			} catch (ExecutionException e) {
				e.printStackTrace();
			}
		}

		// 所有任务已经完成,关闭线程池
		System.out.println("执行完毕....");
		executor.shutdown();
	}

}


通过这个程序可以看出来,简化了使用线程池提交一个Callable任务之后通过获取一个Future来轮询get结果,代码没有使用CompletionService简单!


接下来看一下实现原理:


public interface CompletionService<V> {
    Future<V> submit(Callable<V> task);
    Future<V> submit(Runnable task, V result);
    Future<V> take() throws InterruptedException;
    Future<V> poll();
    Future<V> poll(long timeout, TimeUnit unit) throws InterruptedException;
}

首先看一下java.util.concurrent.ExecutorCompletionService.submit(Runnable, V)源码:

    public Future<V> submit(Runnable task, V result) {
        if (task == null) throw new NullPointerException();
        RunnableFuture<V> f = newTaskFor(task, result);
        executor.execute(new QueueingFuture(f));
        return f;
    }


接下来看看java.util.concurrent.ExecutorCompletionService.newTaskFor(Runnable, V)源码:

    private RunnableFuture<V> newTaskFor(Runnable task, V result) {
        if (aes == null)
            return new FutureTask<V>(task, result);
        else
            return aes.newTaskFor(task, result);
    }

再看java.util.concurrent.AbstractExecutorService.newTaskFor(Runnable, T):

    protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
        return new FutureTask<T>(runnable, value);
    }
提交Runnable接口返回的结果就是传入的value值,底层实现就是想value设置给了java.util.concurrent.Executors.RunnableAdapter<T>的result值。


java.util.concurrent.CompletionService.submit(Callable<Integer>)实现就是返回FutureTask的 private Object outcome结果


 completionService.take()// 阻塞,知道有任务完成可以获取结果
completionService.poll()//poll直接返回,不阻塞。但是没有完成的任务则返回null
completionService.poll(5,TimeUnit.SECONDS) //阻塞等待指定时间,如果有完成结果返回,没有的直接返回null








变分模态分解(Variational Mode Decomposition, VMD)是一种强大的非线性、无参数信号处理技术,专门用于复杂非平稳信号的分析与分解。它由Eckart Dietz和Herbert Krim于2011年提出,主要针对传统傅立叶变换在处理非平稳信号时的不足。VMD的核心思想是将复杂信号分解为一系列模态函数(即固有模态函数,IMFs),每个IMF具有独特的频率成分和局部特性。这一过程与小波分析或经验模态分解(EMD)类似,但VMD通过变分优化框架显著提升了分解的稳定性和准确性。 在MATLAB环境中实现VMD,可以帮助我们更好地理解和应用这一技术。其核心算法主要包括以下步骤:首先进行初始化,设定模态数并为每个模态分配初始频率估计;接着采用交替最小二乘法,通过交替最小化残差平方和以及模态频率的离散时间傅立叶变换(DTFT)约束,更新每个模态函数和中心频率;最后通过迭代优化,在每次迭代中优化所有IMF的幅度和相位,直至满足停止条件(如达到预设迭代次数或残差平方和小于阈值)。 MATLAB中的VMD实现通常包括以下部分:数据预处理,如对原始信号进行归一化或去除直流偏置,以简化后续处理;定义VMD结构,设置模态数、迭代次数和约束参数等;VMD算法主体,包含初始化、交替最小二乘法和迭代优化过程;以及后处理,对分解结果进行评估和可视化,例如计算每个模态的频谱特性,绘制IMF的时频分布图。如果提供了一个包含VMD算法的压缩包文件,其中的“VMD”可能是MATLAB代码文件或完整的项目文件夹,可能包含主程序、函数库、示例数据和结果可视化脚本。通过运行这些代码,可以直观地看到VMD如何将复杂信号分解为独立模态,并理解每个模态的物理意义。 VMD在多个领域具有广泛的应用,包括信号处理(如声学、振动、生物医学信号分析)、图像处理(如图像去噪、特征提取)、金融时间序列分析(识
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

javartisan

对您有帮助,欢迎老板赐一杯奶茶

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值